期刊文献+

基于不舒适感知与组稀疏编码的立体图像视觉舒适度评价

Stereoscopic Image Visual Comfort Prediction via Discomfort-aware Group Sparse Coding
下载PDF
导出
摘要 针对现有的需要依靠映射模型来缩小图像特征和视觉舒适度之间的差距的立体图像视觉舒适度评价方法,提出了一种基于不舒适感知与组稀疏编码的立体图像视觉舒适度评价方法。首先,考虑人眼的视觉注意机制和双目融合极限,结合显著不舒适区域和空间频率提取视差统计特征;然后,对立体图像特征按照主观评分值(MOS)进行不舒适程度分组,并利用组聚类构建不舒适感知字典;最后,通过加权在字典上进行组稀疏编码得到组稀疏系数和设定的每组不舒适程度值,预测得到立体图像视觉舒适度的客观评价值。实验结果表明,对于IVY LAB立体图像库,所提出方法的Pearson线性相关系数(PLCC)值在0.89以上,Spearman等级相关系数(SROCC)值在0.87以上,优于相关代表性的立体图像视觉舒适度评价方法,表明所提出方法的客观评价值与主观评价值具有良好的一致性,更加符合人眼视觉系统的感知特性。 According to the mapping model which needs to bridge the gap between the image features and visual comfort in current stereoscopic image visual comfort prediction, a new stereoscopic image visual comfort assessment method via discomfort-aware group sparse coding is proposed. Firstly, the disparity statistics are extracted combined with salient discomfort region and spatial frequency by considering the visual attention mechanism and binocular fusion limit. Then, a discomfort-aware dictionary is trained covering different levels of discomfort degree by using clustering. Finally, the objective scores of stereoscopic image visual comfort is predicted by weighting the group sparse coefficients obtained by group sparse coding in dictionary. The proposed method is tested on the IVY LAB stereoscopic image database, and the experimental results show that for the proposed method, the Pearson linear correlation coefficient reaches 0. 89, and the Spearman rank correlation coefficient reaches 0. 87, significantly better than state-of-the-art stereoscopic image visual comfort assessment methods. It is indicated that the proposed method can achieve higher correlation with subjective scores, and accords with the human visual perception.
出处 《激光杂志》 北大核心 2017年第2期87-93,共7页 Laser Journal
基金 国家自然科学基金项目(61271270 61311140262) 浙江省自然科学基金项目(LY15F010005)
关键词 立体图像 视觉舒适度评价 显著不舒适区域 视差统计 不舒适感知字典 组稀疏编码 stereoscopic image visual comfort assessment salient discomfort region disparity statistics discomfort-aware dictionary group sparse coding
  • 相关文献

参考文献1

二级参考文献53

  • 1Saxena A, Schulte J, Ng A Y. Depth estimation using monocular and stereo cues [C]. Proceeding of 20th International Joint Conference on Artificial Intelligence Organization (IJCAI), 2007: 2197-2203.
  • 2Cumming B G, Deangelis G C. The physiology of stereopsis. Annual review of neuroscience [J]. Annual Review of Neuroscience, 2001, 24(1): 203-238.
  • 3Tiltman R F. How "stereoscopic" television is shown [J]. Radio News, 1928, 10(5): 418-419.
  • 4Wheatstone C. Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision [J]. Philosophical Transactions of the Royal Society of London, 1838, 128 : 371-394.
  • 5Pastoor S, Matthias W. 3-D displays: A review of current technologies [J]. Displays, 1997, 17(2): 100-110.
  • 6Urey H, Chellappan K V, Erden E, et al.. State of the art in stereoscopic and autostereoscopic displays [J].Proceedings of the IEEE, 2011, 99(4): 540-555.
  • 7Kaller O, Bolecek L, Kratochvil T. Subjective evaluation and measurement of angular characteristics of the 3D stereoscopic displays[C]. Brno: Radioelektronika 22nd International Conference, 2012: 1-4.
  • 8Slanina M, Kratochvil T, Ricny V, et al.. Testing QoE in different 3D HDTV technologies [J]. Radioengineering, 2013, 21 (1): 445-454.
  • 9Holliman N S. 3D display systems [J]. Science, 2010, 38(8): 31-36.
  • 10Hoffman D M, Girshick A R, Akeley K, et al.. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue [J]. Journal of Vision, 2008, 8(3): 1-30.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部