期刊文献+

微通道内单乙醇胺水溶液吸收CO2/N2混合气的传质特性 被引量:5

Mass transfer performance of CO_2/N_2 mixture absorption into monoethanolamine aqueous solution in microchannel
下载PDF
导出
摘要 采用高速摄像仪对400μm×400μm T形微通道内单乙醇胺(MEA)水溶液吸收混合气中CO_2过程的气液两相流及传质特性进行了实验研究,微通道内的压力降采用压力传感器进行测量。考察了弹状流型下气液两相流量及MEA浓度对压力降、比表面积和传质性能的影响。结果表明,当MEA浓度不变,气液两相流量增大时,压力降、比表面积、传质系数、体积传质系数和增强因子均增大,并逐渐趋于恒定。当气液流量不变,MEA浓度增大时,压力降、传质系数、体积传质系数和增强因子增大,但比表面积减小。实验条件下,压力降范围为2.00~5.23 kPa,化学吸收过程的传质系数范围为7.74×10^(-4)~2.97×10^(-3) m·s^(-1)。对于伴有快速化学反应的传质过程,以Sherwood数、Reynolds数、Schmidt数及增强因子为变量建立了体积传质系数的预测关联式,平均偏差为5.09%,具有良好的预测性能。 A high speed camera was used to investigate the gas-liquid two-phase flow and mass transfer performance of CO2/N2 gas mixture absorption into monoethanolamine(MEA) aqueous solution in a 400 μm×400 μm T-shape microchannel. The pressure drop along the microchannel was determined by a pressure sensor. The effects of the gas and liquid phase flow rates, MEA concentration on the pressure drop, specific surface area and mass transfer performance were investigated experimentally. The results showed that for a given concentration of MEA aqueous solution, the pressure drop, the mass transfer coefficient, the specific interfacial area, the volumetric mass transfer coefficient and the enhancement factor increased gradually up to a constant value with increasing gas phase or liquid phase flow rates. With increasing MEA concentration or the pressure drop, the mass transfer coefficient, the volumetric mass transfer coefficient and the enhancement factor increased, but the specific interfacial area decreased. Under experimental conditions, the range of pressure drop was 2.00 to 5.23 k Pa and the mass transfer coefficient of gas-liquid two-phase flow accompanied with chemical absorption was ranged from 7.74×10^(-4) to 2.97×10^(-3) m·s^(-1). A correlation for predicting the volumetric mass transfer coefficient was proposed by taking Sherwood number, Reynolds number, Schmidt number and the enhancement factor into account. The average deviation of the model was 5.09%, indicating a good prediction performance.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第2期643-652,共10页 CIESC Journal
基金 国家自然科学基金项目(21276175,91434204,21306127)~~
关键词 微通道 二氧化碳 气液两相流 化学吸收 传质 增强因子 microchannel carbon dioxide gas-liquid two-phase flow chemical absorption mass transfer enhancement factor
  • 相关文献

参考文献4

二级参考文献24

  • 1李希,陈建峰,陈甘棠.微观混和研究的现状[J].化学反应工程与工艺,1994,10(2):103-112. 被引量:11
  • 2赵玉潮,应盈,陈光文,袁权.T形微混合器内的混合特性[J].化工学报,2006,57(8):1884-1890. 被引量:31
  • 3陈光文.微化工技术研究进展[J].现代化工,2007,27(10):8-13. 被引量:50
  • 4Fu T T, Ma Y G, Funfschilling D, Zhu C, Li H Z. Breakup dynamics of slender bubbles in non-newtonian fluids in microfluidic flow-focusing devices[J]. AIChE Journal, 2012,58(11): 3560-3567.
  • 5Wang X, Yong Y M, Fan P, Yu G Z, Yang C, Mao Z S. Flow regime transition for cocurrent gas-liquid flow in micro-channels[J]. Chemical Engineering Science, 2012,69(1):578-586.
  • 6Kashid M N, Renken A, Kiwi-Minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science,2011,66(17):3876-3897.
  • 7Shui L L, Eijkel J C T, van den Berg A. Multiphase flow in microfluidic systems-control and applications of droplets and interfaces[J]. Advances in Colloid and Interface Science,2007, 133(1) 35-49.
  • 8A1-Rawashdeh M, Nijhuis X, Rebrov E V, Hessel V, Schouten J C. Design methodology for barrier-based two phase flow distributor[J]. AIChE Journal,2012,58( 11 ):3482-3493.
  • 9AI-Rawashdeh M, Fluitsma L J M, Nijhuis T A, Rebrov E V, Hessel V, Schouten J C. Design criteria for a barrier-based gas-liquid flow distributor for parallel microchannels[J]. Chemical Engineering Journal,2012,181/l$2(1):549-556.
  • 10Chen J F, Wang S F, Cheng S. Experimental investigation of two-phase distribution in parallel micro-T channels under adiabatic condition[J]. Chemical Engineering Science, 2012,84(24): 706-717.

共引文献72

同被引文献33

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部