期刊文献+

杂质离子对MgCl2和CO2反应-萃取-醇析耦合过程的影响 被引量:3

Effects of impurity ions on coupled reaction-extraction-alcohol precipitation process of MgCl_2 and CO_2
下载PDF
导出
摘要 通过反应-萃取-醇析耦合过程,将Mg Cl2和CO_2制备成碳酸镁和氯化氢气体是盐湖老卤资源化利用的有效途径。系统地研究了老卤中Na^+、K^+、Ca^(2+)对MgCl_2和CO_2反应-萃取-醇析耦合过程得到的固体产物晶型晶貌的影响。结果表明,Na^+和K^+对耦合过程的影响相似,固体产物均为高纯棒状三水碳酸镁(MgCO_3·3H_2O),且Na^+和K^+均能选择性吸附在MgCO_3·3H_2O晶体的轴面(1 0 1),阻碍该晶面的生长,使得棒状MgCO_3·3H_2O直径变小;Ca^(2+)对反应-萃取-醇析耦合过程有不利的影响,由于CaCl_2能参与反应,生成球状无定形纳米钙镁碳酸盐,使得三水碳酸镁纯度降低。 The preparation of nesquehonite(MgCO_3·3H_2O) and hydrogen chloride by MgCl_2 and CO_2 based on a coupled reaction-extraction-alcohol precipitation process is an effective way for the comprehensive utilization of brine. The effects of impurity ions Na^+, K^+ and Ca^(2+) in brine on the morphology of the solid product obtained in the coupled reaction-extraction-alcohol precipitation process are investigated systematically. The results indicate that Na^+ and K^+ have a similar influence on the coupled process. The products are rod-like high purity MgCO_3·3H_2O when Na^+ and K^+ are added. Moreover, Na^+ and K^+ can be selectively absorbed onto the axial face(1 0 1) of MgCO_3·3H_2O, that will hinder the growth along the(1 0 1) direction and resulting a decrease in the diameter of MgCO_3·3H_2O. Ca^(2+) shows a negative effect on the coupled process. The added impurity CaCl_2 can react with CO_2 and form spherical amorphous nano Mg/Ca-carbonate, which will decrease the purity of the solid products.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第2期702-707,共6页 CIESC Journal
基金 青海省科技厅项目(2015-GX-Q19A)~~
关键词 盐湖老卤 反应-萃取-醇析耦合 三水碳酸镁 杂质离子 形貌 brine coupled reaction-extraction-alcohol precipitation process nesquehonite impurity ions morphology
  • 相关文献

参考文献6

二级参考文献59

  • 1陈建峰,吕营,陈甘棠.混合-反应结晶过程(Ⅰ)实验[J].化工学报,1994,45(2):176-182. 被引量:20
  • 2陈建峰,陈甘棠.混合-反应结晶过程(Ⅱ)模型及验证[J].化工学报,1994,45(2):183-190. 被引量:6
  • 3Fang Y, Agrawal D, Skandan G, et al. Fabrication of translucent MgO ceramics using nanopowders[ J]. Mate- rials Letters, 2004, 58 ( 5 ) : 551-554.
  • 4Choudary B M, Mulukutla R S, Klabunde K J. Benzyla- tion of aromatic compounds with different crystallites of MgO [ J ]. Journal of the American Chemical Society, 2003, 125(8) : 2020-2021.
  • 5Sterrer M, Berger T, Diwald O, et al. Energy Transfer on the MgO surface, monitored by UV- induced H2 chem- isorption[ J]. Journal of the American Chemical Society, 2003, 125( 1 ) : 195-199.
  • 6Kizuka T. Structures of nanocrystalline MgO, ZnO and WO prepared by gas evaporation and in situ compaction [J]. Materials Transactions, JIM, 1998, 39(4): 508- 514.
  • 7Ding Y, Zhang G T, Wu H, et al. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis [J]. Chemistry of Materials, 2001, 13(2) : 435-440.
  • 8Jiu J T, Kurumada K I, Tanigaki M, et al. Preparationof nanoporous MgO using gel as structure-direct template [J]. Materials Letters, 2003, 58(1): 44-47.
  • 9Qian H Y, Deng M, Zhang S M, et al. Synthesis of su- perfine Mg( OH)2 particles by magnesite [ J]. Materials Science and Engineering A, 2007, 445/446 ( 15 ) : 600- 603.
  • 10Chen J F, Shao L. Recent advances in nanoparticles pro- duction by high gravity technology-from fundamentals to commercialization[ J]. Journal of Chemical Engineering of Japan, 2007, 40 ( 11 ) : 896-904.

共引文献52

同被引文献37

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部