摘要
研究一类具有潜伏期的时滞虫媒传染病模型,确定了疾病是否流行的阈值.利用特征值理论分析了无病平衡点和地方病平衡点的稳定性,以时滞为参数,得到了系统在地方病平衡点产生Hopf分支的条件.数值模拟验证了理论研究的有效性.
A vector-born disease model with the incubation period is invested. The threshold value determining whether the disease dies out is obtained, by using the theory and methods of characteristic value, the stabilities of disease-free and endemic equilibria are proved. Choosing the time delay as a bifurcation parameter, Hopf bifurcation for the model is investigated. Simulation results are presented to illustrate our main results.
作者
张晋珠
苏铁熊
ZHANG Jin-zhu SU Tie-xiong(Institute of military equipment and technologies, North University of China, Taiyuan Shanxi 030051 China Department of Mathematics, Taiyuan Institute of Technology, Taiyuan Shanxi 030008 China)
出处
《生物数学学报》
2016年第4期489-496,共8页
Journal of Biomathematics
基金
山西省自然科学基金项目(2012011002-2)