期刊文献+

一类时滞捕食-食饵系统的概周期解的存在唯一性和全局吸引性 被引量:2

Existence and Global Attaractivity of Unique Positive Almost Periodic Solution for A Predator-Prey Model with Delay
原文传递
导出
摘要 利用微分不等式及Liapunov泛函,研究了一类具有时滞和Modified Leslie-Gower HollingⅡ功能性反应捕食-食饵系统,获得了系统一致持久及解全局吸引的充分条件,对于这类概周期系统,建立了存在全局吸引的唯一正概周期解的准则. In this paper, by using differential inequality and Liapunov function, we study the predator-prey model with delay and Modified Leslie-Gower Holling II schemes. Sufficient conditions are obtained wich guarantee the uniform persistence and global attractivity of positive solution for the model. Then some criteria are established for the existence, uniqueness and global attaractivity of positive almost periodic solution for almost periodic system.
作者 杨喜陶 YANG Xi-tao(Department of Mathematics, Hunan University of Science and Technology, Xiangtan Hunan 411201 China)
出处 《生物数学学报》 2016年第4期527-537,共11页 Journal of Biomathematics
基金 湖南省自然科学基金(2015JJ2063)资助
关键词 时滞 LIAPUNOV泛函 一致持久 全局吸引 概周期 Delay Liapunov function Uniform persistence Global attaractivity Almost periodicity
  • 相关文献

参考文献1

二级参考文献14

  • 1M M A El-Sheikh, A Zaghrout, A Ammar. Oscillation and global attractivity in delay equation of population dynamics, Appl Math Comput, 1996, 77: 195-204.
  • 2A M Fink. Almost Periodic Differential Equations, Lecture Notes in Mathematics Vol 377, Spring- Verlag, 1974.
  • 3K Gopalsamy, M R S Kulenovic, G Ladas. Oscillation and global attractivity in models of hematopoiesis, J Dynam Differential Equations, 1990, 2: 117-132.
  • 4I Gyori, G Ladas. Oscillation Theory of Delay Differential Equations With Applications, Clarendon, 1991.
  • 5J K Hale. Theory of Functional Differential Equations, Spring-Verlag, 1977.
  • 6G Karakostas, C G Philos, Y G Sficas. Stable steady state of some population models, J Dynam Differential Equations, 1992, 4: 161-190.
  • 7Y Kuang. Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.
  • 8B M Levitan, V VZhikov. Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.
  • 9G Liu, J Yan, F Zhang. Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis, J Math Anal Appl, 2007, 334: 157-171.
  • 10M C Mackey, L Glass. Oscillations and chaos in physiological control systems, Science, 1977, 197: 287-289.

共引文献6

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部