摘要
利用微分不等式及Liapunov泛函,研究了一类具有时滞和Modified Leslie-Gower HollingⅡ功能性反应捕食-食饵系统,获得了系统一致持久及解全局吸引的充分条件,对于这类概周期系统,建立了存在全局吸引的唯一正概周期解的准则.
In this paper, by using differential inequality and Liapunov function, we study the predator-prey model with delay and Modified Leslie-Gower Holling II schemes. Sufficient conditions are obtained wich guarantee the uniform persistence and global attractivity of positive solution for the model. Then some criteria are established for the existence, uniqueness and global attaractivity of positive almost periodic solution for almost periodic system.
作者
杨喜陶
YANG Xi-tao(Department of Mathematics, Hunan University of Science and Technology, Xiangtan Hunan 411201 China)
出处
《生物数学学报》
2016年第4期527-537,共11页
Journal of Biomathematics
基金
湖南省自然科学基金(2015JJ2063)资助
关键词
时滞
LIAPUNOV泛函
一致持久
全局吸引
概周期
Delay
Liapunov function
Uniform persistence
Global attaractivity
Almost periodicity