期刊文献+

大数据与深度学习综述 被引量:88

Deep learning with big data:state of the art and development
下载PDF
导出
摘要 大数据时代改变了基于数理统计的传统数据科学,促进了数据分析方法的创新,从机器学习和多层神经网络演化而来的深度学习是当前大数据处理与分析的研究前沿。从机器学习到深度学习,经历了早期的符号归纳机器学习、统计机器学习、神经网络和20世纪末开始的数据挖掘等几十年的研究和实践,发现深度学习可以挖掘大数据的潜在价值。本文给出大数据和深度学习的综述,特别是,给出了各种深层结构及其学习算法之间关联的图谱,给出了深度学习在若干领域应用的知名案例。最后,展望了大数据上深度学习的发展与挑战。 As the era of the big data arrives, it is accompanied by profound changes to traditional data science based on statistics. Big data also pushes innovations in the methods of data analysis. Deep learning that evolves from machine learning and muhilayer neural networks are currently extremely active research areas. From the symbolic machine learning and statistical machine learning to the artificial neural network, followed by data mining in the 90s, this has built a solid foundation for deep learning (DL) that makes it a notable tool for discovering the potential value behind big data. This survey compactly summarized big data and DL, proposed a generative relationship tree of the major deep networks and the algorithms, illustrated a broad area of applications based on DL, and highlighted the challenges to DL with big data, as well as identified future trends.
作者 马世龙 乌尼日其其格 李小平 MA Shilong WUNIRI Qiqige LI Xiaoping(State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China)
出处 《智能系统学报》 CSCD 北大核心 2016年第6期728-742,共15页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61003016 61300007 61305054) 科技部基本科研业务费重点科技创新类项目(YWF-14-JSJXY-007) 软件开发环境国家重点实验室自主探索基金项目(SKLSDE-2012ZX-28 SKLSDE-2014ZX-06)
关键词 大数据 机器学习 深层结构 深度学习 神经网络 人工智能 学习算法 派生树 big data machine learning deep network deep learning neural network artificial intelligence learning algorithm derivation tree
  • 相关文献

参考文献11

二级参考文献371

  • 1梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 2董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:98
  • 3WienerN.控制论(中译本)[M].北京:科学出版社,1962..
  • 4Yao Y,Lin T. Generalization of rough sets using model logics[J]. Intelligent Automation and Soft Computing, 1996,2(2):103-120.
  • 5Skowron A,Rauszer C. The discernibility matrices and functions in information systems [A]. Slowinski R. Ifitelligent decision support-handbook of applications and advances of the rough sets theory[C]. Dordrecht :Kluwer Academic Publishers, 1992. 331-362.
  • 6Han J,Kamber M. Data mining:Concepts and techniques [M]. San Mateo :Morgan Kaufmann Publishers, 2000.
  • 7Zhou Yu-jian,Wang Jue. Rule + exception modeling based on rough set theory[A]. Polkowski L,Skowron A. Rough sets and current trends in computing[C]. Berlin :Springer, 1998. 529-536.
  • 8Kaelbling L,Littman M ,Moore A. Reinforcement learning :A survey[J]. Journal of Artificail Intelligence Research,1996,4:237-285.
  • 9Arbib M. Brains machines and mathematics[M]. New York :McGraw Hill companies, 1964.
  • 10Ashby W. Design for a brain the origin of adaptive behavior[M]. London :Chapman & Hall, 1950.

共引文献3833

同被引文献1060

引证文献88

二级引证文献897

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部