期刊文献+

渐变光栅区长度和形状对双锥型FBG光谱特性的影响 被引量:1

Effects of the length and shape of the tapering region on spectral characteristics of the biconical FBGs
原文传递
导出
摘要 提出一种双锥型光纤光栅(FBG),利用传输矩阵方法分析了其渐变光栅区长度和形状对光栅反射谱的影响规律。研究表明:随着渐变光栅区长度的增大,两主峰中间的次级峰幅值按不同比例增大,中间部分比例大,两侧比例小。当渐变光栅区长度增大1个数量级后,中间次峰有明显的交联趋势,随着长度进一步增大,中间次峰完全连接在一起,并与两个主峰等幅变化;渐变光栅区为线性和指数两种形状时,双锥型FBG光谱分布几乎相同,而当渐变光栅区为抛物线形状时,各次级峰右移至右侧主峰两侧,且幅度以主峰为中心逐渐降低。利用实验初步验证了理论分析的正确性。 The effects of the tapering region length and shape on the spectral characteristics of the biconi- cal fiber Bragg grating (FBG) are analyzed using transfer matrix method. The simulation results show that with the increase of the length of the tapering region, the secondary peak amplitudes between the two main peaks increase in different proportions, and there is a larger proportion in the rniddle part. When the tapering region length increases by an order of magnitude, the middle peaks have an obvious series trend. With the length increases, the middle peaks fully connect together, and the two main peaks impolitely change. When the tapering region is a linear and exponential shape, the optical spectrum of the biconical FBG is almost the same, and when the tapering region is a parabolic shape, the secondary peaks shift to the right side of the main peak, and the amplitude of the peak decreases gradually.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第2期161-166,共6页 Journal of Optoelectronics·Laser
基金 浙江省自然科学基金(Q14A040006) 宁波市自然科学基金(2015A610115 2015A610081)资助项目
关键词 双锥型光纤光栅(FBG) 光栅反射谱 渐变光栅区长度 形状 biconical fiber Bragg grating (FBG) reflection spectrum tapering region length shape
  • 相关文献

参考文献3

二级参考文献43

  • 1李启成.光子晶体光纤的原理、结构、制作及潜在应用[J].应用光学,2005,26(6):49-52. 被引量:12
  • 2陈代英,莫德举.光纤布拉格光栅压力传感器的研究[J].北京化工大学学报(自然科学版),2007,34(3):318-320. 被引量:3
  • 3KNIGHT J C, BIRKS T A, RUSSELL P S J, et al. All silica single mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21 (19) : 1547-1549.
  • 4SUN Bing, CHEN Ming-yang, ZHANG Yong-kang, et al. Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing [J]. Optics Express, 2011, 19(5) 4091-4100.
  • 5MATHEW J, SEMENOVA Y, RAJAN G, et al. Humidity sensor based on photonic crystal fibre in- terferometer[J]. Electronics Letters, 2010, 46(19) : 1341-1343.
  • 6HOO Y L, J]N W, HO H L, et al. Measurement of gas diffusion coefficient using photonic crystal fiber TJ]. Photonics Technology Letters, 2003, 15 (10) : 1434-1436.
  • 7HOO Y L, J]N W, SHI C Z, et al. Design and mod- eling of a photonic crystal fiber gas sensor[J]. Ap- plied Optics, 2003, 42(18): 3509-3515.
  • 8NASILOWSKI T, MARTYNKIEN T, STATKIEWICZ G, et al. Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asym- metry[J]. Applied Physics 13, 2005, 81(2-3): 325-331.
  • 9SHINW, AHNTJ, LEEYL, et al. Highly sen- sitive strain and bending sensor based on in-line fi- ber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber[J]. Optics Com- munications, 2010, 283(10): 2097-2101.
  • 10MARTELLI C, CANNING J, GROOTHOFF N, et al. Strain and temperature characterization of photonic crystal fiber Bragg gratings [J]. Optics Letters, 2005, 30(14): 1785-1787.

共引文献23

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部