期刊文献+

一种基于地理位置人群分类的非参数聚类方法 被引量:1

The Non-Parametric Clustering Method Based on Group Classification of Geographic Location
下载PDF
导出
摘要 地理位置作为用户生活轨迹的具体表现,在人群分类中有着举足轻重的作用。地理位置数据具有高维稀疏性,已有人群分类方法需对位置数据进行特征选择并提前确定特征数,实际应用中存在不便。针对该问题,提出基于地理位置人群分类的一种非参数聚类方法。该方法首先利用分层狄利克雷过程(Hierarchical Dirichlet Process,HDP)无监督学习出最佳特征个数;然后利用潜在狄利克雷分布(Latent Dirichlet Allocation,LDA)对位置数据进行特征选取,同时得到功能特征概率矩阵;最后将其作为聚类权向量计算用户间的相似度,利用亲和力聚类(Affinity Propagation,AP)实现人群分类。实验结果表明,该方法较传统方法消耗时间更少、占用内存更低,且同时具有较高的F-measure。 Geographical location as the manifestation of user's life, has a pivotal role in the group classification.Due to geographical location data has high-dimensionaI sparse, the existing classification method must be select feature and determine the characteristics of number in advance, which exist in practical application more inconvenience.To solve this problem, a non-parametric clustering method based on group classification of geographic location was presented. Firstly, use Hierarchi- cal Dirichlet Process unsupervised learning features of the best number: Secondly,use Latent Dirichlet Allocation to fea- ture selection, at the same time get the feature probability matrix; Finally, use it as a clustering weight vector to calculate the similarity between users, using Affinity Propagation implementation group classification. The experimental results show that the method spends less time and less memory,and at the same time with high F-measure.
出处 《软件导刊》 2017年第2期7-10,共4页 Software Guide
关键词 地理位置 人群分类 分层狄利克雷过程 潜在狄利克雷分布 亲和力聚类 Geographical Location Group Classification Hierarchical Dirichlet Process Latent Dirichlet Allocation Affinity Propagation
  • 相关文献

参考文献2

二级参考文献20

  • 1黄建设,姚奇富.数据挖掘技术在犯罪行为分析中的应用[J].浙江工商职业技术学院学报,2005,4(3):45-47. 被引量:3
  • 2丁世洁.刑事案件分析模型的研究与设计[J].武汉理工大学学报,2006,28(3):138-140. 被引量:2
  • 3高全学,梁彦,潘泉,陈玉春,张洪才.SVD用于人脸识别存在的问题及解决方法[J].中国图象图形学报,2006,11(12):1784-1791. 被引量:27
  • 4周东华,李钢,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011:23-29.
  • 5KIM K. Intelligent immigration control system by using passportognition and face verification[ C]// Advances in Neura] Networics -ISNN2005,LNCS 3497. Berlin: Springer, 2005: 147 -'156.
  • 6METAXAS D,VENKATARAMAN S,VOGLER C_ Image-basedstress recognition using a model-based dynamic face tracking systemf C]// Computational Science - ICCS 2004, LNCS 3038. Berlin:Springer, 2004:813 -821.
  • 7WRIGHT J,ALLEN Y, GANESH A. Robust face recognition viasparse representationf J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(2):210 -227.
  • 8KLEMA V C. The singular value decomposition: its computationand some applications [ J]. IEEE Transactions on Automatic Con-trol, 1980,25(2): 164-176.
  • 9ZHANG D Q, CHEN S C, ZHOU Z H. A new face recognitionmethod based on SVD perturbation for single example image per per-son[ J]. Applied Mathematics and Computation, 2005, 163(2):895 -907.
  • 10HONG Z Q. Algebraic feature extraction of image recognition[ J].Pattern Recognition, 1991,24( 3) : 211 -219.

共引文献9

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部