期刊文献+

带可乘白噪声的Schrdinger格点系统的随机吸引子 被引量:3

Random attractor for Schrdinger lattice system with multiplicative white noise
下载PDF
导出
摘要 主要考虑带可乘白噪声的随机Schrdinger格点系统的随机吸引子的存在性.首先,利用Ornstein-Uhlenbeck过程将具白噪声的随机Schrdinger格点系统转化成以随机变量为系数而无噪声的随机格点系统;其次,研究该随机系统的初值问题的整体解的存在唯一性,其解映射可以生成随机动力系统;最后,证明该随机动力系统的有界随机吸收集和随机吸引子的存在性. It was mainly studied the existence of a random attractor for stochastic Schrodinger lattice system. Firstly, the stochastic Schrodinger lattice system with muhiplicative white noise was transfered into a random dynamical system with random coefficients and without noise by the Ornstein-Uhlenbeck process. Secondly, the existence and uniqueness of solution for lattice system with initial condition were considered, and mapping of this solution generated a random dynamical system. Finally, the problem of the existence of a random bounded absorbing set and a random attractor were also investigated.
出处 《浙江师范大学学报(自然科学版)》 CAS 2017年第1期17-23,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11471290)
关键词 随机吸引子 可乘白噪声 Schrodinger格点系统 存在性 random attractor muhiplicative white noise Schrodinger lattice system existence
  • 相关文献

参考文献3

二级参考文献14

  • 1尚亚东,郭柏灵.带有阻尼项的广义对称正则长波方程的指数吸引子[J].应用数学和力学,2005,26(3):259-266. 被引量:15
  • 2陈光淦,蒲志林,张健.无界区域R^3上的非线性应变波方程与薛定谔方程藕合方程组的指数吸引子[J].应用数学学报,2005,28(3):517-526. 被引量:4
  • 3Caraballo T., Real, J. Attractors for 2D-Navier-Stokes models with delays. J. Diff. Eqns, 205:271-297 (2004).
  • 4Chepyzhov, V.V., Vishik, M.I. Attractors for equations of mathematical physics. AMS Colloquium Publications, 49. AMS, Providence, RI., 2002.
  • 5Hale, J.K. Theorey of functional differential equations. Springer-Verlag, New York, 1977.
  • 6Hines C. Upper semicontinuity of the attractor with respect to parameter dependent delays. J. Diff.. Eqns.. 123:56-92 (1995).
  • 7Karachalios, N., Yannacopoulos, A. Global existence and compact attractros for the discrete nonlinear Schrodinger equation. J. Diff. Eqns., 217:88-123 (2005).
  • 8Temam, R. Infinite-dimensional dynamical systems in mechaics and physics. App1. Math. Scf., 68, Springer-Verlag, Berlin, 2nd ed., 1997.
  • 9Wu, J. Theory and applications of partial functional-diffrential equations. Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.
  • 10Zhao, C., Zhou, S. Attractors for retarded first order lattice systems. Nonlinearity, 20:1987-2006 (2007).

共引文献13

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部