期刊文献+

基于相关拓扑势的社团发现算法 被引量:2

COMMUNITY DETECTION ALGORITHM BASED ON INTERRELATED TOPOLOGICAL POTENTIAL
下载PDF
导出
摘要 针对传统算法社团划分精度较低以及模块度函数分辨率低的问题,提出一种基于相关拓扑势的社团发现算法,简称BITP算法。该算法考虑节点的相关性因素,引入相关拓扑势来衡量节点的影响力,寻找出其中的极大势值点,采用标签传播的思想对社团的规模进行控制。在人工合成网络和真实网络上,与多种算法进行实验对比,结果表明该算法多次运行结果相对稳定且社团划分精度较高。算法时间复杂度为O(n),且不需要先验知识,更适合大规模复杂网络上的社团结构挖掘。 Since the traditional methods obtain low precision in division and low resolution in module function,an algorithm of community detection BITP is proposed based on the interrelated topological potential. The algorithm introduces the interrelated topological potential to evaluate the influence of nodes by considering the correlation factor between nodes. The nodes with extreme potential are searched at first. The sizes of the local communities are controlled by adopting the method of label propagation. The experimental results on synthetic and real-world networks show that the proposed algorithm is relatively stable and achieves higher precision. It is more suitable for detecting community structure in large-scaled and complex networks with a time complexity of O( n) and no prior knowledge.
出处 《计算机应用与软件》 2017年第1期258-262,269,共6页 Computer Applications and Software
基金 河南省科技攻关计划项目(142102210435) 河南省高等学校矿山信息化重点学科开放实验室开放基金项目(ky2012-02)
关键词 社团结构 复杂网络 相关拓扑势 标签传播 Community structure Complex network Interrelated topological potential Label propagation
  • 相关文献

参考文献4

二级参考文献51

  • 1赫南,淦文燕,李德毅,康建初.一个小型演员合作网的拓扑性质分析[J].复杂系统与复杂性科学,2006,3(4):1-10. 被引量:16
  • 2周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 3王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 4淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 5XU J, CHEN H. CrimeNet explorer: a framework for crimi- nal network knowledge discovery [ J ]. ACM Transactions on Infromation Systems, 2005, 23 (2) : 201-226.
  • 6ULRIK B, PATRICK K, JURGEN L, et aL Network analy- sis of collaboration structure in wikipedia[ C ]//Proceedings of the 18th International Conference on World Wide Web. New York, USA. 2009.
  • 7GAO Jing , LIANG Feng , FAN Wei , et al. On community outliers and their efficient detection in information networks [ C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2010.
  • 8XU Kaiquan, LI Jiexun, LIAO Shaoyi. Sentiment communi- ty detection in social networks [ C ]//Proceedings of the 2011 iConferencc. Seattle, USA, 2011.
  • 9NGUYEN T, PHUNG D, ADAMS B , et al. Hyper-commu- nity detection in the blogosphere [ C ]//Proceedings of Sec-ond ACM SIGMM Workshop on Social Media. Firenze, Ita- ly, 2010.
  • 10WANG Baoxun, WANG Xiaolong, SUN Chengjie, et al. Modeling semantic relevance for question-answer pairs in web social communities [ C ]//Proceedings of the 48th An- num Meeting of the Association for Computational Linguis- tics. Uppsala, Sweden, 1230-1238.

共引文献111

同被引文献34

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部