期刊文献+

基于关联特征的贝叶斯Android恶意程序检测技术 被引量:5

BAYESIAN ANDROID MALWARE DETECTION TECHNOLOGY BASED ON THE FEATURES OF ASSOCIATION
下载PDF
导出
摘要 Android应用恶意性和它所申请的权限关系密切,针对目前恶意程序检测技术检出率不高,存在误报,缺乏对未知恶意程序检测等不足,为实现对Android平台恶意程序进行有效检测,提出了一种基于关联权限特征的静态检测方法。首先对获取的应用权限特征进行预处理,通过频繁模式挖掘算法构造关联特征集,然后采用冗余关联特征剔除算法对冗余关联特征进行精简,最后通过计算互信息来进行特征筛选,获得最具分类能力的独立特征空间,利用贝叶斯分类算法进行恶意程序的检测。实验结果证明,在贝叶斯分类之前对特征进行处理具有较强的有效性和可靠性,能够使Android恶意程序检出率稳定在92.1%,误报率为8.3%,检测准确率为93.7%。 There is a close relationship between the Android malware and the application's permissions,in view of the detection rate is not high of current detection technology,the existence of false positives,and lack of detection of unknown malicious. A static detection method based on the characteristics of associated permissions is proposed to realize the effective detection of Android malware. First of all, the characteristics of the application permissions are preprocessed,and the permissions association dataset is constructed by the frequent pattern mining algorithm,then the redundancy feature selection algorithm is designed to simplify the redundancy,finally the feature selection is carried out by Mutual information,independent feature spaces with the most ability to classify. The experimental results show that dealing with features has a better validity and reliability before Bayesian classification,the detection rate can be stable in92. 1%,the false positive rate is 8. 3%,the detection accuracy rate is 93. 7%.
出处 《计算机应用与软件》 2017年第1期286-292,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61273237)
关键词 贝叶斯分类 安卓 恶意检测 关联特征 特征选择 Bayesian classification Android Malware detection Associate features Feature selection
  • 相关文献

参考文献5

二级参考文献110

  • 1IDC. Android marks fourth anniversary since launch with 75.0% market share in third quarter, according to IDC EEB/OL]. (2012-11-01) [2013-01-02]. http:// www. idc. com/getdoc, j sp ? containerld = prUS23771812.
  • 2Enck W, Ongtang M, McDaniel P. On lightweight mo- bile phone application certification [ C ]//Proceedings of the 16th ACM Conference on Computer and Communi- cations Security. Chicago, IL, USA, 2009:235 -245.
  • 3Zhou Yajin, Wang Zhi, Zhou Wu, et al. Hey, you, get off of my market: detecting malicious apps in offi- cial and alternative Android markets[C ]//Proc of the 19th Annual Network and Distributed System Security Symposium. San Diego, CA, USA: 2012:1-13.
  • 4Zhou Wu, Zhou Yajin, Jiang Xuxian, et al. Detecting repackaged smartphone applications in third-party An- droid marketplaces [ C ]//Proceedings of the Second ACM Conference on Data and Application Security and Privacy. San Antonio, TX, USA, 2012:317-326.
  • 5Schmidt A-D, Bye R, Schmidt H-G, et al. Static anal- ysis of executables for collaborative malware detection on Android [ C ]//2009 IEEE International Conference on Communications. Dresden, Germany, 2009 : 1 - 5.
  • 6Shabtai A, Elovici Y. Applying behavioral detection on Android-based devices [ C ]//3rd International Confer- ence on Mobile Wireless Middleware, Operating Sys- tems, and Applications. Chicago, IL, USA, 2010:235 - 249.
  • 7Shabtai A, Kanonov U, Elovici Y, et al. "Androma- ly" : a behavioral malware detection framework for an- droid devices [ J ]. Journal of Intelligent Information Systems, 2012, 38(1) :161 - 190.
  • 8Zhao Min, Ge Fangbin, Zhang Tao, et al. AntiMal- Droid: an efficient SVM-based malware detection framework for android [ C ]//2nd International Confer- ence on Information Computing and Applications. Qin- huangdao, China, 2011:158 - 166.
  • 9工业和信息化部.移动互联网恶意代码描述规范[EB/OL].(2011-05-14)[2013-01-02].http://wen-ku.baidu.com/view/2978e18ccc22bcdl26frOc90.ht-m1.
  • 10Android ( operating system ) [ EB/OL] . [ 2012 - 12 -06] http://en.wikipedia. org/wiki/Android_( operating_system ).

共引文献50

同被引文献38

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部