期刊文献+

原子分子物理实验中的符合测量技术 被引量:1

The coincident measurement in the experimental atomic molecular research
原文传递
导出
摘要 原子分子物理的研究对象是原子或者数个原子组成的小分子.因为研究对象结构简单,所以要求研究的实验手段能够尽可能全面的从多个角度测量研究对象的新特性,最好能够实时跟踪这些特性的演化.这种科学需求让我们不停地提升仪器的技术指标和灵活性.本文回顾了常常使用的几种符合测量装置,它们分别基于:源区无场电子飞行谱仪、电子能量分析器、磁瓶谱仪、反应谱仪、速度成像谱仪,它们用于基于超快激光、自由电子激光和同步辐射的原子分子实验.在此我们介绍它们的原理,比较它们之间的异同,重点描述最近的科学需求和技术突破点,并展望未来的发展方向. The targets of atomic molecular physics are atoms or molecules consist of a few atoms. Due to their simple geometrical structure, in order to obtain unrevealed properties, the advanced experimental techniques are often required to view the target from multi view-points and follow the history of the relevant states if possible. This scientific desire drives us to promote the technical specification and flexibility of instruments. Here, we reviewed several coincident setup, they are based on: field free electron time of flight spectrometer, electron energy-dispersive analyzer, magnetic bottle spectrometer, reaction microscope and velocity map imaging spectrometer. They are widely used in the experiments based on ultrafast laser, free electron laser and synchrotron radiation. We give not only the description of the working principles and the technical differences among them, but also put emphasize on the recent scientific desires and possible breakthroughs.
作者 刘小井 池华敬 肖志松 LIU XiaoJing CHI HuaJing XIAO ZhiSong(School of Physics and Nuclear Engineer, Beihang University, Beijing 100191, China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2017年第3期14-22,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:11574020) 青年千人基金资助
关键词 符合测量 超快激光 自由电子激光 同步辐射 coincident measurement, ultrafast laser, free electron laser, synchrotron radiation
  • 相关文献

参考文献1

二级参考文献32

  • 1Bosman M, Keast V J, Watanabe M, Maaroof A I and Cortie M B 2007 Nanotechnology 18 165505.
  • 2Nelayah J, Kociak M, St6phan O, Abajo F J G, Tenc6 M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzm L M and Colliex C 2007 Nat. Phys. 3 348.
  • 3Chu M W, Chen C H, Garcia de Abajo F J, Deng J P and Mou C Y 2008 Phys. Rev. B 77 245402.
  • 4Koh A L, Bao K, Khan I, Smith W E, Kothleitner G, Nordlander P, Maier S A and McComb D W 2009 ACS Nano 3 3015.
  • 5Nicoletti O, Pena F, Leafy R K, Holland D J, Ducati C and Midgley P A 2013 Nature 502 80.
  • 6Suenaga K, Tenc6 M, Mory C, CoUiex C, Kato H, Okazaki T, Shino- hara H, Hirahara K, Bandow S and Iijima S 2000 Scinece 290 2280.
  • 7Pennycook S J, Varela M, Lupini A R, Oxley M P and Chisholm M F 2009 J. Electron Microsc. 58 87.
  • 8Suenaga K, Hasegawa K A, Niimi Y, Kobayashi H, Nakamura M, Liu Z, Sato Yuta, Koshino M and Iijima S 2012 J. Electron Microsc. 61 285.
  • 9Zhou W, Oxley M P, Lupini A R, Krivanek O L, Pennycook S J and Idrobo J C 2012 Microsc. MicroanaL 18 1342.
  • 10Tomitori M, Hirade M, Suganuma Y and Arai T 2001 Surf. Sci. 493 49.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部