期刊文献+

Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids 被引量:1

Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids
原文传递
导出
摘要 Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes. Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第2期188-200,共13页 中国科学(化学英文版)
基金 supported by the US National Science Foundation(CHE-1413328) the Major State Basic Research Program of China(2015CB856203) the National Natural Science Foundation of China (21325211,31500641) theTianjinMunicipalGrant(13ZCZDSY04800, 14ZCZDSY00059,14JCYBJC43400)
关键词 metalloenzymes heme proteins copper proteins ribonucleotide reductase protein design 生物合成途径 非天然氨基酸 蛋白质模型 核糖核苷酸还原酶 建模 金属蛋白 圈层相互作用 电子传递途径
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部