Traveling wave solutions of a delayed prey-predator system with diffusion
Traveling wave solutions of a delayed prey-predator system with diffusion
摘要
This paper discusses the existence of traveling wave solutions of delayed reaction-dif- fusion systems with partial quasi-monotonicity. By using the Schauder's fixed point theorem, the existence of traveling wave solutions is obtained by the existence of a pair of upper-lower solutions. We study the existence of traveling wave solutions in a delayed prey-predator system.
二级参考文献21
-
1Huang, J, Zou, X. Existence of travelling wavefronts of delayed reaction diffusion systems without monotonicity. Disc. Conti. Dynam. Syst. (series A), 9:925-936 (2003)
-
2Huang, W. Monotonicity of heteroclinic orbits and spectral properties of variational equations for delay differential equations. J. Differential Equations, 162:91-139 (2000)
-
3Ma, S. Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differential Equations, 171:294-314 (2001)
-
4Murray J. D. Murray. Mathematical Biology, Springer-Verlag, New York, 1989
-
5Pao, C.V. Nonlinear parabolic and elliptic equations. New York, Plenum Press, 1992
-
6Schaaf, K. Asymptotic behavior and travelling wave solutions for parabolic functional differential equations.Trans. Amer. Math. Soc, 302:587-615 (1987)
-
7Smith, H.L, Thieme, H.R. Monotone semiflows in scalar non-quasimonotone functional differential equations. J. Math. Anal Appl, 150:289-306 (1990)
-
8Smith, H.L, Thieme, H.R. Strongly order preserving semiflows generated by functional differential equations. J. Differential Equations, 93:322-363 (1991)
-
9Smith, H.L, Zhao, X.Q. Global asymptotic stability of travelling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal, 31:514-534 (2000)
-
10So, J. W.H, Wu, J, Zou, X. A reaction diffusion model for a single species with age structure Ⅰ. Travelling wave fronts on uubounded domains, Proc. Royal Soc. London, Ser. A, 457: 1841-1854, 2001
共引文献5
-
1ZHIPING WANG RUI XU.TRAVELING WAVES OF AN EPIDEMIC MODEL WITH VACCINATION[J].International Journal of Biomathematics,2013,6(5):115-133.
-
2张秋华,刘利斌,周恺.时滞非局部扩散Lotka-Volterra竞争系统行波解的存在性[J].山东大学学报(理学版),2015,50(1):90-94.
-
3李海萍.一类具有时滞和空间扩散的SIR传染病模型的行波解[J].数学的实践与认识,2018,48(12):292-295. 被引量:1
-
4谷雨萌,黄明迪.一类时间周期的时滞竞争系统行波解的存在性[J].应用数学和力学,2020,41(6):658-668. 被引量:4
-
5Qing Ge,Xia Wang,Libin Rong.A delayed reaction–diffusion viral infection model with nonlinear incidences and cell-to-cell transmission[J].International Journal of Biomathematics,2021,14(8):305-342. 被引量:1
-
1孟义杰,汪继秀.一类捕食模型解的渐近行为[J].重庆师范大学学报(自然科学版),2015,32(1):76-80.
-
2查淑玲.具有非单调发病率传染病模型解的存在唯一性[J].河南科学,2011,29(6):639-642.
-
3崔泽建.一类非线性抛物型方程组的柯西问题[J].四川师范学院学报(自然科学版),1992,13(2):128-136. 被引量:1
-
4张汉姜,李艳玲.一类反应扩散方程组的拟解与全局吸引子[J].宝鸡文理学院学报(自然科学版),2006,26(3):169-172.
-
5CHEN Zhi-hui,CHEN Xia.Global Existence of Solutions to the Prey-predator System of Three Species with Cross-diffusion[J].Chinese Quarterly Journal of Mathematics,2011,26(1):16-20. 被引量:1
-
6王远弟.抛物型方程组非局部边值问题解的存在唯一性[J].上海交通大学学报,1999,33(6):676-679.
-
7YANKE DU,RUI XU.TRAVELING WAVE SOLUTIONS IN A THREE-SPECIES FOOD-CHAIN MODEL WITH DIFFUSION AND DELAYS[J].International Journal of Biomathematics,2012,5(1):17-33. 被引量:1
-
8曾宪忠,唐双华.带第二类边值的临界非齐次多重调和方程的多解存在性[J].湘潭矿业学院学报,2001,16(2):82-85. 被引量:1
-
9查淑玲.基于IPM策略的捕食模型的动力学分析[J].科学技术与工程,2011,11(8):1660-1663.
-
10夏静,易良海,郑冬云,吕宝红.一类具有时滞的离散时间反应扩散系统的波前解与应用[J].装甲兵工程学院学报,2014,28(6):101-106.