期刊文献+

Global dynamics of a viral infection model with full logistic terms and antivirus treatments 被引量:1

Global dynamics of a viral infection model with full logistic terms and antivirus treatments
原文传递
导出
摘要 In this paper, mathematical analysis of the global dynamics of a viral infection model in vivo is carried out. Though the model is originally to study hepatitis C virus (HCV) dynamics in patients with high baseline viral loads or advanced liver disease, similar models still hold significance for other viral infection, such as hepatitis B virus (HBV) or human immunodeficiency virus (HIV) infection. By means of Volterra-type Lyapunov functions, we know that the basic reproduction number R0 is a sharp threshold para- meter for the outcomes of viral infections. If R0 ~ 1, the virus-free equilibrium is globally asymptotically stable. If R0 ~ 1, the system is uniformly persistent, the unique endemic equilibrium appears and is globally asymptotically stable under a sufficient condition. Other than that, for the global stability of the unique endemic equilibrium, another suffi- cient condition is obtained by Li-Muldowney global-stability criterion. Using numerical simulation techniques, we further find that sustained oscillations can exist and different maximum de novo hepatocyte influx rate can induce different global dynamics along with the change of overall drug effectiveness. Finally, some biological implications of our findings are given.
出处 《International Journal of Biomathematics》 2017年第1期209-232,共24页 生物数学学报(英文版)
  • 相关文献

参考文献2

二级参考文献30

  • 1S. Bonhoeffer, J. M. Comn and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load, J. Virol. 71 (1997) 3275-3278.
  • 2R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+T cells, Math. Biosci. 165 (2000) 27-39.
  • 3R. V. Culshaw, S. Ruan and G. F. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Math. Biol. 46 (2003) 425 444.
  • 4A. S. Fauci and H. C. Lane, Human immunodeficiency virus disease: AIDS and related disorders, in Harrison's Principles of Internal Medicine, 16th edn., Vol. 1(173) (McGraw-Hill, 2000), pp. 1076-1139.
  • 5K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differ. Equations 32 (1998) 1 12.
  • 6A. B. Gumel, X. W. Zhang, P. N. Shivkumar, M. L. Garba and B. M. Sahai, A new mathematical model for assessing therapeutic strategies for HIV infection, J. Theor. Med. 4(2) (2000) 147-155.
  • 7D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol. 35 (1997) 775-792.
  • 8D. E. Kirschner and G. F. Webb, Resistance, remission, and qualitative difference in HIV chemotherapy, Emerg. Infect. Disease 3(3) (1997) 273 283.
  • 9M. A. Nowak and R. M. May, AIDS pathogenesis: Mathematical models of HIV and SIV infections, AIDS 7 (1993) 38.
  • 10M. A. Nowak and R. M. May, Virus Dynamics (Cambridge University Press, Cambridge, UK, 2000).

共引文献3

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部