期刊文献+

钛合金粉末冶金工业化生产技术 被引量:13

Industrialized Production Technology of Powder Metallurgy(PM) Titanium and Titanium Alloy
下载PDF
导出
摘要 通过分析钛在熔炼中遇到的问题,并结合粉末冶金技术的特点,指出应用粉末冶金技术是未来钛产业发展的必然选择。详述了钛合金粉末冶金生产的工艺路线,该工艺生产的TC4钛合金粉末冶金件抗拉强度可达900 MPa以上,断后伸长率超过10%,综合力学性能优于GB/T 25137—2010钛及钛合金锻件标准要求。钛合金粉末冶金件还可用来进行锻造和挤压加工成形,经锻造、挤压后,力学性能可进一步提高。总之,利用粉末冶金技术进行钛合金的工业化生产具有生产设备投入成本低、可实现产品近净成形、节约原材料、产品性能高、生产周期短等优势。 By analyzing the problems encountered in the melting of titanium, combined with the characteristics of powder metallurgy technology, pointed out that the application of powder metallurgy technology was the inevitable choice of the future development of titanium industry. The technical process of powder metallurgy titanium alloy production was described in detail. The tensile strength of powder metallurgy TC4 titanium alloy reaches more than 900 MPa, elongation after fracture is more than 10%, and the comprehensive mechanical properties exceed the requirement of GB/T 25137--2010. Powder metallurgy titanium alloy can also be used for forging and extrusion forming, the mechanical properties after forging and extrusion are further improved. In short, powder metallurgy titanium alloy industrial production has significant advantages, such as low cost of production equipment, products can be achieved near net shape, saving raw materials, excellent
作者 王海英 郭志猛 芦博欣 张策 Wang Haiying Guo Zhimeng Lu Boxin Zhang Ce(University of Science and Technology Beijing, Beijing 100083, China)
机构地区 北京科技大学
出处 《钛工业进展》 CAS 北大核心 2017年第1期1-5,共5页 Titanium Industry Progress
关键词 粉末冶金 钛合金 工业化生产 力学性能 powder metallurgy titanium alloy product performance, short production cycle, etc. industrialized production mechanical property
  • 相关文献

参考文献5

二级参考文献38

  • 1王智平,张振宇,苏义祥,梁补女.金属合金粉末的研究与发展[J].铸造,2004,53(6):415-418. 被引量:8
  • 2陈仕奇,黄伯云.金属粉末气体雾化制备技术的研究现状与进展[J].粉末冶金技术,2004,22(5):297-302. 被引量:52
  • 3游涛,袁小川,苏贵桥,张春辉.钛合金快速凝固技术及其研究现状[J].铸造,2007,56(6):567-571. 被引量:7
  • 4草加膝司 河野富夫 洞田亮 近藤铁也.[A]..粉体粉末冶金协会讲演概要集平成七年度秋期大会[C].,1995.139.
  • 5宝鸡钢铁研究所.钛及其合金的粉末治金[A]..第一届钛及钛合金会议文集[C].上海科学技术情报研究所,1975..
  • 6Anoshkin N F, Demchenkov G G. Material science and technological aspects of rapidly solidified titanium alloy production[J]. Materials Science and Engineering A, 1998, 243 : 263 - 268.
  • 7Eylon D, Froes F H, Parsom L D. Titanium PM components for advanced aerospace applications. Met. Powder Rep., 1983; 38(10) :567 - 571.
  • 8Froes F H. Prealloyed titanium powder metallurgy-barriers to use. Int.J. Powder Metall., 1987;23(4) :267 - 269.
  • 9Froes F H, Hebeisen J. Emerging and furture applications for HIP of titanium based materials. In:Li Chenggong,Chen Hongxi-a,Ma Fukang eds. Hot isostatic pressing conference proceedings,HIP'99, Beijing: International academic publishers, 1999:1 - 24.
  • 10Rachuk V S, Goncharov N S, Martynyenko Y A et al. Design, development, and history of the oxygen/hydrogen engine RD-0 120,AIAA 95-2540.

共引文献86

同被引文献160

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部