摘要
文章利用2003-2013年兴业银行的调查数据,分析金融生态和动态能力的特征以及企业动态能力构成的因素,建立了BP神经网络的企业动态能力评价模型,运用BP神经网络模拟训练,运用已经模拟过的BP神经网络模型对2003-2013年度兴业银行动态指标进行测算,同时做出企业动态能力的客观评价。银行的动态能力现状为:2003-2007年间,其动态能力指数很低,训练输出的数据分别为0.0995、0.1497、0.2791、0.2908、0.3071,属于"差"及"较差"水平;2008-2009年训练输出的数据为0.4762、0.5903,属于"一般"水平;2010-2011年训练输出的数据分别为0.6914、0.7201,达到"较好"水平;2012年训练输出数据为0.5918,下降到"一般"水平,但经过调整,在2013年,输出数据为0.7089,回升到"较好"。基于以上结论,文章应用PDCA循环提出了金融生态视角下企业动态能力培养的对策与建议。
This paper which used 2003-2013 xingye bank survey data, analyzes financial ecology and the characteristics of dynamic capabilities and enterprise dynamic competence factors, establishing the enterprise dynamic ability of the BP neural network evaluation model, using BP neural network training, and this paper has trained BP neural network model which used for xingye bank during the period 2003 to 2013 in each of the dynamic capabilities to make the evaluation more accurately. That bank dynamic capability of the present situation is as follows:between 2003 and 2007, its dynamic capability index is low, the training of the output data were0.0995, 0.1497, 0.2791, 0.2908, 0.2791; It shows the "poor" and "low" level. Between 2008 and 2009 output training data is 0.4762,0.5903, it presents the "general" level. The data from 2010 -2011 training output were 0.6914, 0.7201, coming up to the "good" level, training output data is 0.5918 in 2012, down to the "general", but the output data is 0.7089 in 2013 back to the "good". Application of PDCA cycle based on the above conclusions, this article puts forward the financial ecological perspective of cultivating the ability of enterprise dynamic countermeasures and suggestions.
出处
《技术经济与管理研究》
北大核心
2017年第2期61-65,共5页
Journal of Technical Economics & Management
基金
国家自然科学基金项目(71163047)
云南省哲学社会科学研究基地课题(JD2015YB23)
云南师范大学博士启动项目(160025)
关键词
金融生态
动态能力
商业竞争
企业发展
Financial ecology
Dynamic capabilities
Commercial competition
Enterprise development