1Sandi KLAVZAR,Kishori P. NARAYANKAR,H. B. WALIKAR.Almost Self-Centered Graphs[J].Acta Mathematica Sinica,English Series,2011,27(12):2343-2350. 被引量:3
二级参考文献16
1Akiyama, J., Ando, J. K., Avis, D.: Miscellaneous Properties of Equi-Eccentric Graphs. In: Convexity and graph theory (Jerusalem, 1981), North-Holland Math. Stud. 87, 13-23, North-Holland, Amsterdam, 1984.
2Buckley, F., Miller, Z., Slater, P. J.: On graphs containing a given graph as center. J. Graph Theory, 5, 427 434 (1981).
3Janakiraman, T. N.: On self-centered graphs. J. Ramanujan Math. Soc., T, 83-92 (1992).
4Negami, S., Xu, G. H.: Locally geodesic cycles in 2-self-centered graphs. Discrete Math., 58,263-268 (1986).
5Buckley, F.: Self-centered graphs. Ann. New York Acad. Sci., 576, 71-78 (1989).
6Lee, S.-M., Wang, P.-C.: On groups of automorphisms of self-centered graphs. Bull. Math. Soc. Sci. Math. Roumanie (g. S.), 34(82), 311-316 (1990).
7Janakiraman, T. N., Bhanumathi, M., Muthammai, S.: Self-centered super graph of a graph and center number of a graph. Ars Combin., 87, 271-290 (2008).
8Chartrand, G., Gu, W., Schultz, M., et al.: Eccentric graphs. Networks, 34, 115-121 (1999).
9Gimbert, J., L6pez, N., Miller, M., et al.: Characterization of eccentric digraphs. Discrete Math., 306, 210-219 (2006).
10Walikar, H. B., Narayankar, K. P.: Almost self-centered ASC(R)-graphs. Submitted.