期刊文献+

时分复制技术皮秒脉冲光纤放大器数值研究 被引量:3

Numerical Study on Picosecond Pulse Fiber Amplifier Based on Divided-Pulse Amplification Technique
原文传递
导出
摘要 基于时分复制脉冲放大的理论模型,数值研究了五级双折射晶体组级联时分复制光纤放大系统中各参数对皮秒放大脉冲特性的影响。结果表明,子脉冲之间非线性相移积累的不同会导致耦合效率降低。当时分复制后子脉冲间距大于2.5倍脉宽时,子脉冲串耦合效率达到最优。在光纤放大器非线性系数和最大增益一定的条件下,为获得峰值功率为10 MW的变换极限皮秒放大脉冲,给出了种子脉冲峰值功率和增益光纤长度的选择范围。在光纤长度确定的条件下,为了降低晶体偏转角和透射率对放大脉冲性能的影响,应选择低峰值功率的种子脉冲和高增益的光纤。 Based on the theoretical model of divided-pulse amplification, the effect of all parameters in the divided pulse fiber amplification system with five-step birefringent crystals group cascading on the property of amplified picosecond pulse is numerically investigated. The results indicate that, the difference of nonlinear phase shift accumulation between divided pulses leads to the reduction of the combining efficiency. The optimal combining efficiency is obtained when the time separation between two adjacent divided pulses is larger than 2.5 times of pulse width. Under the condition of nonlinear coefficient and maximum gain of fiber amplifiers being fixed, the selection ranges of gain fiber length and seed pulse peak power are presented in order to obtain a transform-limited amplified pulse with an output peak power of 10 MW. Under the condition of fiber length being fixed, it is suggested to choose a seed pulse with low peak power and a fiber with large gain in order to suppress the impact of rotation angle bias and transmissivity on the property of the amplified pulse.
出处 《中国激光》 EI CAS CSCD 北大核心 2017年第2期206-212,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61275109 11674133 61405079) 国家级大学生创新创业训练计划项目(201510320023) 江苏省高校优势学科建设工程 江苏省自然科学基金(BK20140231)
关键词 激光光学 光纤放大器 皮秒脉冲放大 高功率 非线性光学 laser optics fiber amplifiers picosecond pulse amplification high power nonlinear optics
  • 相关文献

参考文献2

二级参考文献21

  • 1马再如,朱启华,冯国英,陈建国.啁啾光脉冲的自相位调制效应对压缩光脉冲的影响[J].强激光与粒子束,2005,17(3):391-394. 被引量:8
  • 2Eidam T,HanfS,SeiseE,etal.FemtosecondfiberCPAsystememitting830Waverageoutputpower[J].OptLett,2010,35(2):94-96.
  • 3FernándezAD,VerhoefAJ,JespersenK,etal.High-fidelity165fs5-μJpulsesfromanintegratedytterbiumfibersystem[C]//2011ConferenceonLasersandElectro-Optics(CLEO).2011:1-2.
  • 4LimpertJ,RoserF,SchimpfDN,etal.Highrepetitionrategigawattpeakpowerfiberlasersystems:challenges,design,andexperiment[J].IEEEJSelTopQuantElectron,2009,15(1):159-169.
  • 5RuehlA,KuhnV,WandtD,etal.Normaldispersionerbium-dopedfiberlaserwithpulseenergiesabove10nJ[J].OptExpress,2008,16(5):3130-3135.
  • 6AguergarayC,BroderickNGR,ErkintaloM,etal.Mode-lockedfemtosecondall-normalall-PMYb-dopedfiberlaserusinganonlinearamplifyingloopmirror[J].OptExpress,2012,20(10):10545-10551.
  • 7LiJing,LinHonghuan,JingFeng,etal.Intermodalinterferenceinducedsignificantfrequencymodulationtoamplitudemodulationconversioninabroadbandlarge-mode-areafiberlaser[J].OptLett,2011,36(7):1053-1055.
  • 8M E Fermann, A Galvanauskas, G Sucha. Ultrafast Laser: Technology and Application[M]. New York: Marcel Dekker Inc, 2002, 323- 765.
  • 9Rudolf Weber, Thomas Graf, Peter Berger, et al.. Heat accumulation during pulsed laser materials processing[J]. Optics Express, 2014, 22(9): 11312-11324.
  • 10Ik-Bu sohn,Man-Seop Lee. Nano-strueturing of transparent materials by femtosecond laser pulses[J]. Journal of the Optical Society of Korea, 2005, 9(1): 1-5.

共引文献14

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部