期刊文献+

极化敏感的太赫兹超材料椭圆闭合双环阵列谐振特性

Resonance Characteristics of the Polarization Sensitive Terahertz Metamaterial with Two Elliptical Closed Rings Array
原文传递
导出
摘要 为设计出性能优良的太赫兹滤波器,设计了一种基于两个椭圆型闭合谐振环结构的极化敏感太赫兹超材料。利用CST Microwave Studio软件对其透射特性进行仿真。结果表明,该超材料在x极化时,有两个吸收峰和一个透射峰;在y极化时,也有三个谐振峰,但其位置与X极化时不同。运用表面等离子体共振、磁谐振理论及等效电路模型对谐振峰产生的机理进行了分析。同时,研究了椭圆双环的结构参数对谐振峰位置的影响规律,外环的参数变化对低频的谐振峰影响较大,内环的变化对高频的谐振峰影响较大。论文设计的结构对偏振敏感太赫兹滤波器的研究具有一定的参考价值。 For the design of high performance terahertz filter, a polarization sensitive terahertz metamaterial with two elliptical closed resonance rings structure is proposed. The transmission performance of the metamaterial is simulated by the CST micro- wave studio software. The results show that for the metamaterial x-polarized, there are two absorption peaks and one transmis- sion peak. For y-polarized, there are also three resonance peaks, but the position of the three peaks are different from x-polar- ized. An analysis of resonance peaks is provided by means of surface plasma resonance, magnetic resonance theory and equiva- lent circuit model. At the same time, the influence law of two elliptical rings structure parameters on resonance peak position are researched. The parameters of the outer elliptical ring have a great influence on the resonance peaks at lower frequency, and the parameters of inner elliptical ring effect on the resonance peaks at higher frequency greatly. The structure designed in the paper promises a certain reference value in the study of polarization sensitive terahertz filters.
出处 《应用激光》 CSCD 北大核心 2016年第6期741-745,共5页 Applied Laser
基金 广西自动检测技术与仪器重点实验室主任基金资助项目(项目编号:YQ14102) 桂林电子科技大学创新团队资助
关键词 太赫兹波 滤波器 偶极子谐振 磁谐振 椭圆 terahertz wave filter dipole resonance magnetic resonance elliptical
  • 相关文献

参考文献5

二级参考文献79

  • 1Veselago V G. The electrodynamics of substances withsimultaneously negative values of e andμ [J]. Soy Phys Uspekhi, 1968, 10:509-514.
  • 2Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Trans Microwave Theory Technol, 1999,47 : 2075- 2084.
  • 3Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Sci- ence, 2006, 314:977-980.
  • 4Yao Jie, Liu Zhaowei,Liu Yongmin, et al. Optical nega- tive refraction in bulk metamaterials of nanowires[J].Science, 2008, 321:930.
  • 5Azad A K, Taylor A J, Smirnova E, et al. Characteriza- tion and analysis of terahertz metamaterials based on rec- tangular split-ring resonators[J]. Appl Phys Lett, 2008, 92:011119.
  • 6O' Hara J F, Srnirnova E, Azad A K, et al. Effects of microstructure variations on macroscopic terahertz meta- film properties[J]. Active and Passive Elec Comp, 2007, 2007:49691.
  • 7Yu Yuan, Christopher B, Talmage T, et al. Dual-band planar electric metamaterial in the terahertz regime[J]. Optics Express, 2008, 16:9746-9752.
  • 8Chen H T, O'Hara J F, Taylor A J, et al. Complemen- tary planar terahertz metamaterials[J]. Optics Express, 2007, 15:1084-1095.
  • 9Grischkowsky D, Keiding S, van Exter M,et al. Far-in- frared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. J Opt Soc Am B, 1990, 7: 2006-2015.
  • 10Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys Rev Lett, 2006, 96: 107401.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部