期刊文献+

预防接种情况下潜伏期和染病期均具有传染力的SEIR传染病模型的全局分析 被引量:1

Global Analysis of an SEIR Epidemic Model with Infectivity in both Latent Period and Infected Period under Vaccination
下载PDF
导出
摘要 讨论了一类在连续预防接种情况下具有垂直传染的潜伏期和染病期均有传染力的SEIR传染病模型,通过计算得到了基本再生数R0。当R0<1时,仅存在无病平衡点且全局渐近稳定;当R0>1时,除存在不稳定的无病平衡点外,还存在唯一的正地方病平衡点且全局渐近稳定。 A kind of an epidemic model with vertical transmission and infectivity in both latent period and infected period under continuous vaccination was discussed. The basic reproductive number R0 was obtained through calculation. When R01,in the system there exists disease free equilibrium point,which is globally asymptotical stable; when,R01the unstable disease free equilibrium exits,and has a unique the positive endemic equilibrium,which is globally asymptotical stable.
作者 郭金生 梅凤娟 GUO Jinsheng MEI Fengjuan(School of Mathematics and Statistics, Hexi University, Zhangye734000, China Suolong Schools for Nine Years, Minxian 748400, China)
出处 《贵州大学学报(自然科学版)》 2016年第6期5-9,共5页 Journal of Guizhou University:Natural Sciences
基金 河西学院校长基金(XZ2015-01) 河西学院青年基金(QN2014-12)
关键词 传染病模型 基本再生数 垂直传染 预防接种 epidemic model the basic reproductive number vertical transmission continuous vaccination
  • 相关文献

参考文献3

二级参考文献17

  • 1王高雄,周之铭.常微分方程[M].北京:高等教育出版社,2007.
  • 2Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the Human Immunodeficiency virus epidemic [ A]. Castillo-Chavez C.Mathematical and Statistical Approaches to AIDS Epidemiology [C]. New York: Springer, 1989.
  • 3Anderson R M. Transmission dynamics and control of infectious diseases [A]. Anderson R M, May M R.Population Biology of Infectious Diseases, Life Sciences Research Report 25 [C]. Berlin: Springer,1982.
  • 4Heesterbeek J A P, Metz J A J. The saturating contact rate in marriage and epidemic models [J]. J Math Biol, 1993, 31:529-539.
  • 5Hale J K. Ordinary differential equations [M]. New York: Wiley-Interscience, 1969.
  • 6Hofbauer J, So J W H. Uniform persistence and repellors for maps [J]. Proc Amer Math Soc, 1989,107:1137-1142.
  • 7Muldowney J S. Compound matrices and ordinary differential equations [J]. Rocky Mount J Math, 1990,20 : 857-872.
  • 8Esteva L, Vargas C. Analysis of a dengue disease transmission model [J]. Math Biosci, 1998, 150:131-151.
  • 9N Yoshida, T Hara. Global stability of a delayed SIR epidemic mod- el with density dependent birth and death rates[ J ]. Journal of Com- putational and Applied Mathematics,2007 ( 201 ) : 339 - 347.
  • 10W Ma, Y Takeuchi, T Hara, et al. Permanence of an SIR epidemic model with distrib-uted time delays [ J ]. Tohoku Math J, 2002 (54) :581 -591.

共引文献47

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部