期刊文献+

Ti-6Al-4V在模拟体液中的超高周疲劳裂纹萌生与扩展 被引量:2

On the Very High Cycle Fatigue Crack Initiation and Growth of Ti-6Al-4V Alloy in Simulated Body Fluid Environment
原文传递
导出
摘要 采用超声疲劳方法,开展了医用Ti-6Al-4V在实验室大气和模拟体液两种环境条件下105~109周次范围内的疲劳实验,研究了Ti-6Al-4V的疲劳裂纹萌生与初始扩展行为。实验结果表明:与实验室大气相比,在模拟体液环境下,Ti-6Al-4V的疲劳强度降低了约200MPa。主要原因是疲劳裂纹扩展门槛值减小,促进了疲劳裂纹的萌生和扩展。在两种环境下都发现:高应力短寿命条件下,疲劳裂纹萌生源于微区破碎;而在低应力长寿命条件下,疲劳裂纹萌生源于微区开裂。理论分析表明,粒状亮面(Granular Bright Face,GBF)区的形成与裂纹尖端塑性区和Ti-6Al-4V晶粒尺寸大小有关。 Based on ultrasonic fatigue method and in a range of 10^5- 10^9 cycles, fatigue experiment was carried out for medical Ti-6Al-4V alloy in laboratory atmosphere and simulated body fluid (SBF), respectively. Fatigue crack initiation and crack initial growth pattern of Ti-6Al-4V alloy was experimentally studied. Experimental results indicate that comparing with that obtained in laboratory atmosphere environment, the fatigue strength of Ti-6Al-4V alloy decreases about 200MPa in simulated body fluid environment. The main reason is the reduction of fatigue crack growth threshold, which promotes the initiation and propagation of fatigue crack. It was discovered in both environments that under high stress and short fatigue life condition, the fatigue crack initiation is due to micro area broken; while under low stress and long fatigue life condition, the fatigue crack initiation is due to micro area cracking. Theoretical analysis show that the formation of both granular bright face (GBF) area and plastic area at crack pointed end are related with the size of Ti-6Al-4V alloy crystalline grain.
作者 李久楷 刘永杰 张宏 杨昆 王清远 LI Jiu-kai LIU Yong-jie ZHANG Hong YANG Kun WANG Qing-yuan(School of College of Architecture & Environment, Sichuan University, Chengdu 610065, China)
出处 《实验力学》 CSCD 北大核心 2016年第6期787-794,共8页 Journal of Experimental Mechanics
基金 国家自然科学基金(11327801 11502151 11302142 11572057)资助
关键词 钛合金 模拟体液 超高周疲劳 裂纹萌生 Titanium alloy simulated body fluid very high cycle fatigue crack initiation
  • 相关文献

参考文献2

二级参考文献19

  • 1倪金刚.超声振动载荷下合金的疲劳裂纹扩展性能研究[J].航空动力学报,1994,9(3):298-300. 被引量:6
  • 2倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995,10(3):245-248. 被引量:12
  • 3Dobbs HS, Robertson JLM. Alloys for orthopaedic implant use[J]. Engineering in Medicine, 1982, 11(4):175-182.
  • 4Imam MA. Corrosion fatigue of 316L stainless steel, Co-Cr- Mo Alloy, and ELI Ti-6Al-4V[ J ]. ASTM STP684,1979:128- 143.
  • 5Roth LD. Ultrasonic fatigne testing. In: Metals Handbook [ M]. USA:ASM ,1985.
  • 6Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity [ J ]. Biomaterials , 2006 ,27 (15) : 2907 - 2915.
  • 7Wang QY, Bathias C, Kawagoishi N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength [ J ]. International Journal of Fatigue, 2002, 24 (12) :1269-1274.
  • 8姜伟之 赵时熙 王春生 张峥.工程材料的力学性能[M].北京航空航天大学出版社,2000..
  • 9C.Leyens,et al.Titanium and Titanium Alloy[M].Wiley-VCH Verlag GmbH & Co.2003.
  • 10Bathias C.,et al.Influence of Mean Stress on Ti-6Al-4V Fatigue Crack Growth at Very High Frequency[J].Engineering Fracture Mechanics,1997,56(2):255~264.

共引文献12

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部