摘要
采用实验生理学测试与主观疲劳调查的方法,通过实车驾驶实验,以脑电信号和心电信号为基本指标,研究不同驾驶经验驾驶员在09:00—12:00,12:00—14:00,21:00—23:00这3个驾驶过程中疲劳等级的变化。通过主成分分析法,建立脑电信号与心电信号之间的关系,确定驾驶疲劳综合评价指标。结果显示:上述疲劳综合指标在在不同疲劳等级状态下存在显著性差异,通过对不同指标的融合提高了对驾驶员不同疲劳等级的识别准确率。
With the help of Electroencephalogram (EEG) and Electrocardiogram (ECG), a real traffic driving experiment which combining physiology test and subjective fatigue survey was conducted to study the law of fatigue level variation of a diver who was driving during 09:00--12:00AM, 12:00--14 : 00PM and 21 : 00--23 : 00PM. By the principal component a- nalysis (PCA) , this study was able to establish the relationship between EEG and ECG signal, and to set up a comprehen- sive indicator to determine driver fatigue. The results show that the above-mentioned comprehensive indicator can recognize different levels of driver fatigue and the fusion of different indicators thas can improve the accuracy in detecting driver's dif- ferent fatigue levels.
出处
《重庆交通大学学报(自然科学版)》
CAS
北大核心
2017年第1期77-81,共5页
Journal of Chongqing Jiaotong University(Natural Science)
基金
高等学校博士学科点专项科研基金联合资助课题项目(20113227110007)
"江苏大学"博士创新计划项目(KYLX15_1050)
关键词
交通工程
生理信号
疲劳驾驶分级
主成分分析法
驾驶经验
traffic engineering
physiological signal
driver' s fatigue level
principal component analysis ( PCA )
drivingexperience