期刊文献+

常数轮公平理性秘密共享方案 被引量:1

Constant-round fair rational secret sharing scheme
下载PDF
导出
摘要 在理性秘密共享方案中,公平性是所有参与者期望的目标。基于均匀分组原理研究了常数轮理性秘密共享方案,结合双线性对有关知识和双变量单向函数构造知识承诺方案,该方案是可验证的,以此来检验分发者和参与者的欺骗问题。分发者分给各组参与者的子秘密份额数量最多相差1,有效约束参与者的偏离行为。参与者按照协议执行4轮即可实现公平重构秘密,一定程度上降低了公平理性秘密共享方案的通信复杂度,具有一定应用价值。 In the rational secret sharing scheme, fairness is the goal that all participants expect. Based on the principle of uniform grouping, the scheme was verified by combining bilinear pair knowledge and bivariate one-way function to verify the deception problem of the distributor and the participant.The number of sub-secret shares distfibuted by the distributor to each group of participants is at most one, effectively restricting the deviation behavior of the participant. In the end, participants can implement fair reconstruction secret in four rounds according to the protocol, which reduces the communication complexity of fair and rational secret sharing scheme to a certain extent, and has certain application value.
作者 李梦慧 田有亮 冯金明 LI Meng-hui TIAN You-liang FENG Jin-ming(College of Mathematics and Statistics, Guizhou University, Guiyang 550025, China Institute of Cryptography & Data Security, Guizhou University, Guiyang 550025, China Key Laboratory of Public Data of Guizhou Province, G-uiyang 550025, China College of Computer Science and Technology, Guizhou University, Guiyang 550025, China)
出处 《网络与信息安全学报》 2017年第1期61-67,共7页 Chinese Journal of Network and Information Security
基金 国家自然科学基金资助项目(No.61363068) 贵州省教育厅科技拔尖人才支持基金资助项目(No.黔教合KY字[2016]060)~~
关键词 秘密共享 通信复杂度 博弈论 双线性对 secret sharing, communication complexity, game theory, bilinear pairing
  • 相关文献

参考文献2

二级参考文献24

  • 1Halpern J, Teague V. Rational secret sharing and multiparty computation: Extended abstract [C] //Proe of the 36th Annual ACM Symp on Theory of Computing. New York: ACM, 2004: 623-632.
  • 2Asharov G, Lindell Y. Utility dependence in correct and fair rational secret sharing [J]. Journal of Cryptology, 2011, 24 (1): 157-202.
  • 3Ong S J, Parkes D V, Alon R, et al. Fairness with an honest minority and a rational majority [G] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009: 36-53.
  • 4Kol G, Naor M. Cryptography and game theory: Design protocols for exchanging information [G]//LNCS 4948: Proc of the 5th Theory of Cryptography Conf. Berlin: Springer, 2008:320-339.
  • 5Gordon S D, Katz J. Rational secret sharing revisited [G] // LNCS 4116: Proc of the 5th Int Conf on Security and Cryptography for Networks. Berlin.. Springer, 2006; 229- 241.
  • 6Kol G, Naor M. Games for exchanging information[C] // Proc of the 40th Annual ACM Syrup on Theory of Computing. New York: ACM, 2008: 423-432.
  • 7Fuchsbauer G, Katz J, Naccache D. Efficient secret sharing in the standard communication model[G]//LNCS 5978: Proc of the 7th Theory of Cryptography Conf. Berlin: Springer, 2010:419-436.
  • 8Sourya J D, Asim K P. Achieving crrectness in fair rational secret sharing [G] //LNCS 8257: Proc of the 12th Int Conf on Cryptology and Network Security. Berlin: Springer, 2013: 139-161.
  • 9Varsha D, Mahnush M, Jared S. Scalable mechanisms for rational secret sharing [J].Distributed Computing, 2015, 28 (3) :171-187.
  • 10Micali S, Shelat A. Purely rational secret sharing (extend abstract) [C] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009 : 54-71.

共引文献6

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部