摘要
该文定义了图_n^2,并研究了该图的奇优美和奇强协调性.利用构造法分别给出了图_n^2在n=4k(k≥2)、n=4k+2时的奇优美算法,在n=4k(k≥2)时,的奇强协调算法,进而证明了图_n^2在n=2k(k≥3)时是奇优美图,在n=4k(k≥2)时是奇强协调图等结论,从而推动了对图的奇优美性和奇强协调性的研究.最后提出猜想:当n=4k+2时,图_n^2不是奇强协调图.
The paper defines C2n and analyzes odd-graceful and odd-strongly harmonious graphs. With the help of construction method, the graphs C2are respectively given when n = 4k(k ≥ 2)、 n =4k + 2 using Oddgraceful Algorithm and when n -= 4k(k 〉 2)using Odd-strongly harmonious Algorithm, and finally it concludes that graph C2n is Odd-graceful graph when n = 2k(k ≥ 3)and are graph Cn2nis Odd-strongly harmonious graph when n = 4k(k≥ 2),which promotes the study of odd-graceful and odd-strongly harmonious attributes of the graph. The paper also proposes a conjecture that C2n is not a Odd-strongly harmonious graph when n = 4k+ 2.
作者
林育青
Lin Yuqing(Department of Nature, Shantou Polytechnic, Shantou 515041, China)
出处
《纯粹数学与应用数学》
2017年第1期1-11,共11页
Pure and Applied Mathematics
基金
汕头职业技术学院重点资助课题(SZK2013Z1)
关键词
奇优美图
奇强协调图
图
N2
odd graceful graph, odd strongly harmonious graph, graphs C2n