期刊文献+

加权Motzkin序列的Hankel行列式 被引量:2

The Hankel determinants of some weighted Motzkin sequences
下载PDF
导出
摘要 基于经典的Motzkin路引入了一类新的加权Motzkin路的定义,用这种路给出了一类指数型Riordan矩阵的组合解释,得到了相应的Riordan矩阵第0列元素(加权Motzkin序列)的加法公式.作为应用,得到了一类加权Motzkin序列的Hankel行列式的计算方法. Based on the classical Motzkin paths, a new family of weighted Motzkin paths is introduced. By means of those paths, the combinatorial interpretation of some Exponential Riordan arrays are given. Meanwhile, the addition formula of the 0 column elements of Riordan arrays, i.e., weighted Motzkin sequences, is obtained. As an application, the evaluation of Hankel determinants of some weighted Motzkin sequences are also obtained.
作者 李彦君 杨胜良 Li Yanjun Yang Shengliang(School of Science, Lanzhou University of Technology, Lanzhou 730050, Chin)
出处 《纯粹数学与应用数学》 2017年第1期26-36,共11页 Pure and Applied Mathematics
基金 国家自然科学基金(11561044)
关键词 指数型Riordan矩阵 加权Motzkin路 加法公式 Hankel行列式 exponential Riordan array, weighted Motzkin path, addition formula, Hankel determinant
  • 相关文献

参考文献1

二级参考文献10

  • 1Renault M. Four Proofs of the Ballot Theorem[J]. Mathematics Magazine, 2007, 80(5): 345-352.
  • 2Ram~rez J L, Sirvent V F. A Generalization of the k-Bonacci Sequence from Riordan Arrays[J]. Electronic Journal of Combinatorics, 2015, 22(1): 1-20.
  • 3Shapiro L W, Getu S, Woan W J, et al. The Riordan group[J]. Discrete Applied Mathematics, 1991,34: 229-239.
  • 4Sprugnoli R. Riordan arrays and combinatorial sums[J]. Discrete Mathematics, 1994, 132: 267-290.
  • 5He Tianxiao, Sprugnoli R. Sequence characterization of Riordan arrays[J]. Discrete Mathematics, 2009, 309(12): 3962-3974.
  • 6Merlini D, Rogers D G, Sprugnoli R, et al. On some alternative characterizations of Riordan arrays[J]. Canadian Journal of Mathmatics, 1997, 49(2): 301-320.
  • 7Merlini D, Sprugnoli R. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern[J]. Theoretical Computer Science, 2011, 412(27): 2988-3001.
  • 8Sprugnoli R. An Introduction to Mathematical Methods in Combinatorics[M]. Dipartimento Di Sistemi E Informatica Viale Morgagni, 2006.
  • 9Sloane N J A. The on-line encyclopedia of integer sequences[EB/OL]. New York: Cornell University, 1964.
  • 10Nkwanta A, Shapiro L W. Pell walks and Riordan matrices[J]. Fibonacci Quarterly, 2005, 43(2): 170-180.

共引文献3

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部