期刊文献+

碱性抛光液中螯合剂对Cu/Ta电偶腐蚀的影响(英文) 被引量:1

Effect of the ChelatingAgent in the Alkaline PolishingSlurryon the Galvanic Corrosion Between Cu and Ta
下载PDF
导出
摘要 铜钽(Cu/Ta)界面在化学机械抛光(CMP)中易发生电偶腐蚀。研究了碱性抛光液中螯合剂对铜钽开路电位以及抛光速率的影响。利用静态与动态下的电化学方法,分别测得开路电压和动电位极化曲线,表征了铜钽分别在不同螯合剂体积分数的抛光液中的化学反应速率。CMP结果表明,随着螯合剂体积分数的增加,铜的去除速率不断增加,而钽的去除速率先增加后降低。同时,通过静态腐蚀实验和表面状态表明,随螯合剂体积分数增加,铜表面络合反应加快,而钽表面钝化加重。当螯合剂的体积分数为0.2%时,在动态情况下,铜钽之间腐蚀电位差降到0mV,表明螯合剂可以极大地降低Cu/Ta电偶腐蚀。 Galvanic corrosion occurs easily at the interface of Cu and Ta in the process of chemical mechanical polishing(CMP).The effects of the chelating agent in the alkaline polishing slurry on the open circuit potential and removal rates of Cu and Ta were investigated.The open circuit potential and potentiodynamic polarization curves were measured by the electrochemical method in static condition and dynamic condition,characterizing the chemical reaction rates of Cu and Ta in the slurries with different volume fractions of the chelating agent.The CMP results show that with the increase of the volume fraction of the chelating agent,the removal rate of Cu increases,but the removal rate of Ta increases firstly and then decreases.Meanwhile,the static corrosion experiment and surface topography show that with the increase of the chelating agent volume fraction,the complexation of the Cu surface increases,while the passivation of the Ta surface increases.When the volume fraction of the chelating agent is 0.2%,the corrosion potential difference between Cu and Ta decreases to 0mV under the dynamic condition,revealing that the chelating agent can significantly reduce the galvanic corrosion between Cu and Ta.
出处 《微纳电子技术》 北大核心 2017年第3期194-201,共8页 Micronanoelectronic Technology
基金 Major National Science and Technology Special Projects(2016ZX02301003-004-007) Natural Science Foundation of Hebei Province,China(E2014202147,F2015202267) Key Laboratory of Electronic Materials and Devices of Tianjin,China
关键词 电偶腐蚀 化学机械抛光(CMP) 螯合剂 Cu Ta galvanic corrosion chemical mechanical polishing(CMP) chelating agent
  • 相关文献

参考文献1

二级参考文献50

  • 1GARNER F H, HALE A R. Corrosion in the petroleum industry part 2 [J]. Anti-corrosion Methods and Materials, 1955, 2(6): 177-181.
  • 2SARVER E, EDWARDS M. Effects of flow, brass location, tube materials and temperature on corrosion of copper plumbing devices [J]. Corrosion Science, 2011, 53(5): 1813-1824.
  • 3AI J Z, GUO X P, CHEN Z Y. The adsorption behavior and corrosion inhibition mechanism of anionic inhibitor on galvanic electrode in 1% NaCl solution [J].Applied Surface Science, 2006, 253(2): 683-688.
  • 4RAHMAN AB M, KUMAR S, GERSON AR. Galvanic corrosion of laser weldments of AA6061 aluminum alloy [J]. Corrosion Science, 2007,49(12): 4339-4351.
  • 5VARELA F E, KURATA Y, SANADA N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple [J]. Corrosion Science, 1997,39(4): i75-788.
  • 6EL-DAHSHAN M E, SHAMS EL DIN A M, HAGGAG H H. Galvanic corrosion in the systems titaniuml316L stainless steel! Al copper in Arabian water [J]. Desalination, 2002, 142(2): 161-169.
  • 7DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44}-mild steel and AE44--aluminium alloy (AA6063) in brine solution [J]. Corrosion Science, 2010, 52(10): 3514-3522.
  • 8GLASS G K, ASHWORTH V. The corrosion behaviour of the zinc-mild steel galvanic cell in hot sodium bicarbonate solution [J]. Corrosion Science, 1985,25(11): 971-983.
  • 9PROSEK T, NAZAROV A, BEXELL U, THIERRY D, SERAK J. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions [J]. Corrosion Science, 2008, 50(8): 2216-2231.
  • 10YIN Z F, YAN M L, BAI Z Q, ZHAO W Z, ZHOU W J. Galvanic corrosion associated with SM 80SS steel and Ni-based alloy G3 couples in NaCI solution [J]. Electrochimica Acta, 2008, 53(22): 6285-6292.

共引文献15

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部