期刊文献+

轨迹大数据异常检测:研究进展及系统框架 被引量:58

Anomaly Detection for Trajectory Big Data: Advancements and Framework
下载PDF
导出
摘要 定位技术与普适计算的蓬勃发展催生了轨迹大数据,轨迹大数据表现为定位设备所产生的大规模高速数据流.及时、有效地对以数据流形式出现的轨迹大数据进行分析处理,可以发现隐含在轨迹数据中的异常现象,从而服务于城市规划、交通管理、安全管控等应用.受限于轨迹大数据固有的不确定性、无限性、时变进化性、稀疏性和偏态分布性等特征,传统的异常检测技术不能直接应用于轨迹大数据的异常检测.由于静态轨迹数据集的异常检测方法通常假定数据分布先验已知,忽视了轨迹数据的时间特征,也不能评测轨迹大数据中动态演化的异常行为.面对轨迹大数据低劣的数据质量和快速的数据更新,需要利用有限的系统资源处理因时变带来的概念漂移,实时地检测多样化的轨迹异常,分析轨迹异常间的因果联系,继而识别更大时空区域内进化的、关联的轨迹异常,这是轨迹大数据异常检测的核心研究内容.此外,融合与位置服务应用相关的多源异质数据,剖析异常轨迹的起因以及其隐含的异常事件,也是轨迹大数据异常检测当下亟待研究的问题.为解决上述问题,对轨迹异常检测技术的研究成果进行了分类总结.针对现有轨迹异常检测方法的局限性,提出了轨迹大数据异常检测的系统架构.最后,在面向轨迹流的在线异常检测、轨迹异常的演化分析、轨迹异常检测系统的基准评测、异常检测结果语义分析的数据融合以及轨迹异常检测的可视化技术等方面探讨了今后的研究工作. The vigorous development of positioning technology and pervasive computing has given rise to trajectory big data, i.e. the high speed trajectory data stream that originated from positioning devices. Analyzing trajectory big data timely and effectively enables us to discover the abnormal patterns that hide in trajectory data streams, and therefore to provide effective support to applications such as urban planning, traffic management, and security controlling. The traditional anomaly detection algorithms cannot be applied to outlier detection in trajectory big data directly due to the characteristics of trajectories such as uncertainty, un-limitedness, time-varying evolvability, sparsity and skewness distribution. In addition, most of trajectory outlier detection methods designed for static trajectory dataset usually assume a priori known data distribution while disregarding the temporal property of trajectory data, and thus are unsuitable for identifying the evolutionary trajectory outlier. When dealing with huge amount of low-quality trajectory big data, a series of issues need to be addressed. Those issues include coping with the concept drifts of time-varying data distribution in limited system resources, online detecting trajectory outliers, analyzing causal interactions among traffic outliers, identifying the evolutionary related trajectory outlier in larger spatial-temporal regions, and analyzing the hidden abnormal events and the root cause in trajectory anomalies by using application related multi-source heterogeneous data. Aiming at solving the problems mentioned above, this paper reviews the existing trajectory outlier detecting techniques from several categories, describes the system architecture of outlier detection in trajectory big data, and discusses the research directions such as outlier detection in trajectory stream, visualization and evolutionary analysis in trajectory outlier detection, benchmark for trajectory outlier detection system, and data fusion in semantic analysis for anomaly detection results.
作者 毛嘉莉 金澈清 章志刚 周傲英 MAO Jia-Li JIN Che-Qing ZHANG Zhi-Gang ZHOU Ao-Ying(Institute of Data Science and Engineering, East China Normal University, Shanghai 200062, China Computer School, China West Normal University, Nanchong 637009, China)
出处 《软件学报》 EI CSCD 北大核心 2017年第1期17-34,共18页 Journal of Software
基金 国家自然科学基金(61370101 U1501252 U1401256) 上海市教委创新计划(14ZZ045) 西华师范大学国家级项目培育专项(16C005)~~
关键词 异常检测 轨迹大数据 概念漂移 时变进化性 anomaly detection trajectory big data concept drift time-varying evolutionary
  • 相关文献

参考文献2

二级参考文献21

  • 1Knorr EM, Ng RT, Tucakov V. Distance-Based outliers: Algorithms and applications. VLDB Journal, 2000,8(3):237-253.
  • 2Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000. 427-438.
  • 3Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000.93-104.
  • 4Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C. LOCI: Fast outlier detection using the local correlation integral. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the ICDE 2003. New York: IEEE Computer Society, 2003.315-326.
  • 5Aggarwal CC, Yu PS. Outlier detection for high dimensional data. In: Aref WG, ed. Proc. of the SIGMOD 2001. New York: ACM, 2001.37-46.
  • 6Lee J, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework. In: Proe. of the ICDE 2008. New York: IEEE Computer Society, 2008. 140-149.
  • 7Chen J, Maylor K. Leung, Gao Y. Noisy logo recognition using line segment hausdorff distance. Pattern Recognition, 2003,36(4): 943-955.
  • 8Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.
  • 9Huttenlocher DP, Kcdem K, Sharir M. The upper envelope of voronoi surfaces and its applications. Discrete and Computational Geometry, 1993,9(1):267-291,.
  • 10Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In: Hector GM, ed. Proc. of the SIGMOD'90. New York: ACM, 1990. 322-331.

共引文献33

同被引文献404

引证文献58

二级引证文献291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部