摘要
战场上雷达是对目标进行跟踪的常用手段,当敌方施放有源压制干扰时常导致目标航迹丢失,雷达无法对目标进行持续跟踪。为了改善对目标的跟踪性能,建立了干扰背景下基于机载多传感器协同探测的雷达跟踪系统,首先采用Kalman滤波预测雷达量测缺失数据,当跟踪精度不满足期望值时应用支持向量机回归算法估计缺失数据作为雷达的量测值继续进行卡尔曼滤波估计,实现了对目标的持续跟踪,精度较高。仿真验证了该系统能够解决有源压制干扰条件下的目标航迹丢失问题,增强了雷达对目标的跟踪性能。
Aimed at the problems that radar is a normal way used in tracking target at the battlefield, when hostile force uses active suppressing interference, the target trace is lost, and the radar fails to track target continuously, this paper builds a radar tracking system based on cooperative detection of airborne multi- sensor resource in interference to improve tracking property for target. Firstly, the paper predicts the ra- dar lost information by Kalman smoothing. When tracking precision can't make the desired value satisfied, the paper estimates the lost data and continues Kalmansmoothing estimation by applying the method of SVMR, thus achieving to track the target continuously, and the precision is higher. The simulation proves that the system can solve the lost problem of target trace under condition of active suppressing interfer- ence, thus enhancing radar tracking property for target.
出处
《空军工程大学学报(自然科学版)》
CSCD
北大核心
2017年第1期39-43,共5页
Journal of Air Force Engineering University(Natural Science Edition)
基金
航空科学基金(20145596025)
关键词
传感器
支持向量机
KALMAN滤波
协同探测
sensor resource
support vector machine
Kalman smoothing
cooperation detection