摘要
本研究以南方某含溴水源为原水,利用饮用水常规工艺及臭氧-活性炭深度处理中试连续实验,评价臭氧氧化过程中溴酸盐生成情况,并考察了氨氮、过氧化氢(H_2O_2)对溴酸盐控制效果及对三卤甲烷生成势(THMFP)的去除影响.结果表明,在不同水质条件下,臭氧消耗量为1.0 mg·L^(-1)以上时,溴酸盐的生成量超过标准(10.00μg·L^(-1)).利用氨氮和H_2O_2投加均能有效控制溴酸盐生成量,且随投加量增大,溴酸盐生成量逐渐降低,氨氮投加0.10~0.30 mg·L^(-1)或m(H_2O_2)/m(O3)(质量比)为0.2~1.0时,能够将溴酸盐控制在标准以内.当氨氮-H_2O_2联合控制溴酸盐时,溴酸盐生成量随m(H_2O_2)/m(O3)先升高后降低.在利用氨氮和H_2O_2投加进行溴酸盐控制过程中,氨氮对THMFP的去除效率影响并不显著,而投加H_2O_2使得THMFP去除效能有所降低.
A pilot-scale study with conventional water treatment and ozone-biological activated carbon ( O3-BAC) treatment was conducted to evaluate the impact of ammonia and hydrogen peroxide ( H2 O2 ) addition on the bromate and disinfection by-products formation potential (DBPFP) control, with bromide containing water as raw water. It was found that bromate concentration would exceed 10. 00 μg·L^ - 1 as ozone doses were higher than 1. 0 mg·L ^- 1 under different water qualities. Ammonia and H2 O2 could effectively control bromate formation and bromate concentration decreased as ammonia and H2 O2 doses increased. Bromate concentration could be controlled below 10. 00 μg·L ^- 1 as ammonia dose was 0. 10-0. 30 mg·L^ - 1 or the m(H2 O2 ) / m(O3 ) was 0. 2-1. 0. However, as ammonia-H2 O2 was combined for the same purpose, bromate increased firstly and then decreased. Ammonia addition would not significantly affect the THMFP control but H2 O2 application would depress the efficiency of THMFP removal.
出处
《环境科学》
EI
CAS
CSCD
北大核心
2017年第2期616-621,共6页
Environmental Science
基金
北京工商大学两科基金培育项目(LKJJ2016-17)
国家自然科学基金青年项目(51408010)
国家自然科学基金青年科学基金项目(51608011)
关键词
臭氧
生物活性炭
溴酸盐
过氧化氢
氨氮
三卤甲烷
ozone
biological activated carbon
bromate
hydrogen peroxide
ammonia
trihalomethane