期刊文献+

氨氮及H2O2对溴酸盐和消毒副产物控制的影响 被引量:3

Impact of Ammonia and H_2O_2 on Bromate and Disinfection By-products Control
原文传递
导出
摘要 本研究以南方某含溴水源为原水,利用饮用水常规工艺及臭氧-活性炭深度处理中试连续实验,评价臭氧氧化过程中溴酸盐生成情况,并考察了氨氮、过氧化氢(H_2O_2)对溴酸盐控制效果及对三卤甲烷生成势(THMFP)的去除影响.结果表明,在不同水质条件下,臭氧消耗量为1.0 mg·L^(-1)以上时,溴酸盐的生成量超过标准(10.00μg·L^(-1)).利用氨氮和H_2O_2投加均能有效控制溴酸盐生成量,且随投加量增大,溴酸盐生成量逐渐降低,氨氮投加0.10~0.30 mg·L^(-1)或m(H_2O_2)/m(O3)(质量比)为0.2~1.0时,能够将溴酸盐控制在标准以内.当氨氮-H_2O_2联合控制溴酸盐时,溴酸盐生成量随m(H_2O_2)/m(O3)先升高后降低.在利用氨氮和H_2O_2投加进行溴酸盐控制过程中,氨氮对THMFP的去除效率影响并不显著,而投加H_2O_2使得THMFP去除效能有所降低. A pilot-scale study with conventional water treatment and ozone-biological activated carbon ( O3-BAC) treatment was conducted to evaluate the impact of ammonia and hydrogen peroxide ( H2 O2 ) addition on the bromate and disinfection by-products formation potential (DBPFP) control, with bromide containing water as raw water. It was found that bromate concentration would exceed 10. 00 μg·L^ - 1 as ozone doses were higher than 1. 0 mg·L ^- 1 under different water qualities. Ammonia and H2 O2 could effectively control bromate formation and bromate concentration decreased as ammonia and H2 O2 doses increased. Bromate concentration could be controlled below 10. 00 μg·L ^- 1 as ammonia dose was 0. 10-0. 30 mg·L^ - 1 or the m(H2 O2 ) / m(O3 ) was 0. 2-1. 0. However, as ammonia-H2 O2 was combined for the same purpose, bromate increased firstly and then decreased. Ammonia addition would not significantly affect the THMFP control but H2 O2 application would depress the efficiency of THMFP removal.
出处 《环境科学》 EI CAS CSCD 北大核心 2017年第2期616-621,共6页 Environmental Science
基金 北京工商大学两科基金培育项目(LKJJ2016-17) 国家自然科学基金青年项目(51408010) 国家自然科学基金青年科学基金项目(51608011)
关键词 臭氧 生物活性炭 溴酸盐 过氧化氢 氨氮 三卤甲烷 ozone biological activated carbon bromate hydrogen peroxide ammonia trihalomethane
  • 相关文献

参考文献8

二级参考文献104

  • 1刘润生,张燕.饮用水中溴酸盐的去除技术[J].环境科学与技术,2010,33(12):66-70. 被引量:17
  • 2李继,董文艺,贺彬,王刚,杜红,张金松,马军,王宝贞.臭氧投加方式对溴酸盐生成量的影响[J].中国给水排水,2005,21(4):1-4. 被引量:41
  • 3吴清平,孟凡亚,张菊梅,郭伟鹏.臭氧消毒中溴酸盐的形成、检测与控制[J].中国给水排水,2006,22(16):12-15. 被引量:41
  • 4APHA, AWWA, WEE 1995. Standard Methods for the Exam- ination of Water and Wastewater. American Public Health Association, United Book Press, Baltimore, Maryland.
  • 5Bader H, Hoigne J, 1981. Determination of ozone in water by the indigo method. Water Research, 15(4): 449-456.
  • 6Bader H, Sturzenegger V, Hoigne J, 1988. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N- diethyl-p-phenylenediamine (DPD). Water Research, 22(9): 1109-1115.
  • 7Bond T, Henriet O, Goslan E H, Parsons S A, Jefferson B, 2009. Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates. Environmen- tal Science and Technology, 43(15): 5982-5989.
  • 8Buxton G V, Elliot A J, 1986. Rate constant for reaction of hydroxyl radicals with bicarbonate ions. International Jour- nal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 27(3): 241-243.
  • 9Chae S, Kim C, 2000. A study on characteristics and removal of DBPFP in the Kum River. Korean Society of Environmental Engineering, 22(9): 1589-1600.
  • 10Duguet J P, Brodard E, Dussert B, Mallevialle J, 1985. Improve- ment in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide. Ozone: Science and Engineering, 7(3): 241-258.

共引文献48

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部