期刊文献+

石墨烯热膨胀系数的尺寸效应研究 被引量:3

Study on the Scale Effect of Graphene's Coefficient of Thermal Expansion
下载PDF
导出
摘要 采用分子动力学模拟的方法,对单层石墨烯的面热膨胀系数进行了研究。结果发现,单层石墨烯的面热膨胀系数随温度的变化呈非线性变化,且在0~1 200 K的温度范围内是负值(热收缩)。重点研究了石墨烯的面热膨胀系数与模型尺寸和采样区域尺寸的关系,结果表明,1)当石墨烯模型尺寸小于10.0 nm×10.0 nm时,随着模型尺寸的增大石墨烯的面热膨胀系数绝对值变小,当模型尺寸大于或等于10.0 nm×10.0 nm时,随着模型尺寸的增大石墨烯的面热膨胀系数无明显变化,处在一定的分布带内;2)采样区域尺寸过小会导致石墨烯的面热膨胀系数结果不稳定,不易收敛,当采样区域大于一定尺寸后则可得到稳定的热膨胀系数,并且易收敛,为此提出了较为合理的采样区域尺寸。 The coefficient of superficial thermal expansion (α) of single layer graphene (SLG) was studied through molecular dynamics (MD) simulation. Results show that a values of SLG varies nonlinearly with the change of temperature, and it is negative in the temperature range of 0 - 1 200 K (thermal contraction). The relationship between the model size and the sampling area size and α was studied intensively. The results show that: on the one hand, when the model size is smaller than 10. 0 nm×10. 0 nm, the absolute value of α decreases with the increase of the model size ; when the model size is not smaller than 10. 0 nm×10. 0 nm, it does not change apparently with the increasing model size and keeps in a certain distribution; on the other hand, a too small sampling area will lead to unstable coefficient of superficial thermal expansion and it is hard to obtain convergent α results; when the sampling area is larger than a certain value, stable and convergent α results can be achieved. Based on this, reasonable sampling area in the coefficient of superficial thermal expansion study of SLG is suggested.
出处 《塑料工业》 CAS CSCD 北大核心 2017年第2期104-107,114,共5页 China Plastics Industry
基金 国家自然科学基金(11572268) 西南科技大学研究生创新基金(15ycx126) 基于团队模式的研究生专业课程教学实践项目(14JGCX07)
关键词 石墨烯 面热膨胀系数 分子动力学 Graphene Coefficient of Superficial Thermal Expansion Molecular Dynamics
  • 相关文献

参考文献4

二级参考文献45

  • 1丁健,雷景新,罗勇飞,李启满.抗静电半硬质PVC材料的制备及性能[J].塑料科技,2007,35(3):54-57. 被引量:9
  • 2Geim K. Science,Graphene : Status and Prospects [ J ]. Science,2009, 324: 1 530.
  • 3Avouris P. Graphene: Electronic and Photonic Properties and De-vices [J]. Nano Lett, 2010,10: 4 285.
  • 4Shi Y,Hamsen C,Jia X,et al. Synthesis of Few-Layer HexagonalBoron Nitride Thin Film by Chemical Vapor Deposition [ J]. NanoLett, 2010, 10: 4 134.
  • 5Golberg D, Bando Y, Yang H, et al. Boron Nitride Nanotubes andNanosheets [ J]. ACS Nano, 2010,4: 2 979.
  • 6Novoselov K S, Geim A K, Morozov S V, et al. Two-DimensionalGas of Massless Dirac Fermions in Graphene [ J]. Nature, 2005,438: 197.
  • 7Zhang Y,Tan Y, Horst L, et al. Experimental Observation of theQuantum Hall Effect and Berrys Phase in Graphene [ J]. Nature,2005,438 ; 201.
  • 8Neek-Amal M,Beheshtian J,Sadeghi A,et al. Boron NitrideMonolayer: A Strain-Tunable Nanosensor [ J]. J Phys Chem C,2013,117: 13 261.
  • 9Larentis S,Fallahazad B,Tutuc E. Field-Effect Transistors andIntrinsic Mobility in Ultra-Thin MoSe2 Layers [ J]. Appl Phys Lett,2012,101: 223 104.
  • 10Ross J S, Wu S, Yu H, et al. Electrical Control of Neutral andCharged Excitons in a Monolayer Semiconductor [ J ]. Nat Com-mun, 2013, 4; 1 474.

共引文献40

同被引文献14

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部