期刊文献+

基于词袋模型和极限学习机的轴承故障诊断 被引量:3

Bearing Fault Diagnosis Based on BoW and ELM
下载PDF
导出
摘要 特征提取为设备故障诊断的关键步骤,现有特征提取主要基于时域、频域和时频域方法,但在噪声大、混合故障多发、变转速等复杂工况下应用受限。提出一种基于词袋模型(BoW,bag of words)的振动信号故障诊断方法。该方法改变了传统基于一维信号进行故障诊断的模式,首先将一维振动信号转换成二维灰度图像信号,结合图像处理的方法来实现故障诊断。同时针对一维振动信号升维的过程中忽略了信号的空间特性这一不足,引入极限学习机对算法优化,并以滚动轴承为研究对象验证了方法的有效性。 Feature extraction is a key step in equipment fault diagnosis.The existing methods are mainly based on time domain,frequency domain and time-frequency domain,but their usage is limited in the actual conditions such as high noise,mixed fault and unfixed rotation speed.A method for bearing fault diagnosis based on bag of words(BoW),which differs from traditional one-dimensional signal based fault diagnosis method,is put forward.The vibration signal will first be transformed into two-dimensional gray-scale image signal and then will be processed by using image processing method.Extreme learning machine(ELM) will be used to optimize the algorithm on account of the negligence of the signal's spatial characteristic.The effectiveness of the method is verified by using the rolling bearing as the research object.
出处 《测控技术》 CSCD 2017年第2期24-27,共4页 Measurement & Control Technology
基金 国家自然科学基金项目(51375037 51675035)
关键词 滚动轴承 故障诊断 混合故障 词袋模型 极限学习机 rolling bearing fault diagnosis mixed fault BoW ELM
  • 相关文献

参考文献5

二级参考文献44

  • 1郭代飞,高振明,张坚强.利用小波门限法进行信号去噪[J].山东大学学报(理学版),2001,36(3):306-311. 被引量:22
  • 2陆晓珩,高延兵,瞿建农,任卫礼.一元线性回归方法的应用[J].中国测试,2012,38(S1):11-13. 被引量:7
  • 3陆爽,侯跃谦,田野.基于AR模型和径向基神经网络的滚动轴承故障诊断[J].机械传动,2004,28(5):10-13. 被引量:6
  • 4康海英.变速变载工况下齿轮箱故障诊断研究[D].石家庄:军械工程学院,2008.
  • 5钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社.2003.
  • 6McFadden P D, Smith J D. Vibration monitoring of rolling element bearing by the high-frequency resonance technique-a review[J]. Int. J. Tribology, 1984,17 : 3 - 10.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [ J ]. Biometrika Trust, 1994, 81 (3) : 425 - 455.
  • 8Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [ J ]. Advances in Adaptive Data Analysis, 2009, 1 ( 1 ) : 1 - 41.
  • 9Dwyer R F. Detection of non-gaussian signals by frequency domain kurtosis estima-tion [ C ]. Aeoustie, Speech and Signal Processing. Boston: IEEE International Conference on ICASSP, 1983 : 607 -610.
  • 10Antoni J, Randall R B. The spectral kurtosis: a useful tool for characterizing non-stationary signals [ J ]. Mechanical Systems and Signal Processing, 2006, 20 (2) : 282 - 307.

共引文献146

同被引文献30

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部