摘要
针对一类时滞非线性被控对象,提出一种基于RBF神经网络的广义预测自校正控制方案,在广义预测控制中,采用RBF神经网络建立被控对象的多步预测模型,并不断修正预测输出,提高预测输出的精度。控制器则采用GPC隐式修正算法,不用辨识对象的模型参数,大大减少了计算量。经过仿真研究,与常规的PID自适应控制方法相比较,证明了该方法的优越性,预测控制误差小,实时性好,动态响应快。
A generalized predictive self-tuning control scheme based on RBF neural network is proposed for a class of time delay nonlinear controlled objects.In the generalized predictive control(GPC),RBF neural network is used to establish multi-step predictive models of the controlled object,and constantly revising forecast output to improve the accuracy of predictive output.The controller adopts a GPC implicit correction algorithm,without to identify the model parameters,the calculated amount is gready reduced.By computer simulating,and comparing with the conventional PID adaptive control methods,the superiority of the method is proved,and it has small predictive control error,good real-time performance and fast dynamic response.
出处
《测控技术》
CSCD
2017年第2期54-57,共4页
Measurement & Control Technology
基金
国家自然科学基金项目(U1404612)
关键词
时滞非线性
RBF神经网络
广义预测控制
多步预测
nonlinear time-delay
RBF neural network
generalized predictive control
multi-step prediction