期刊文献+

基于神经网络的时滞非线性系统的广义预测控制 被引量:1

Generalized Predictive Control of Time-Delay Nonlinear Systems Based on Neural Networks
下载PDF
导出
摘要 针对一类时滞非线性被控对象,提出一种基于RBF神经网络的广义预测自校正控制方案,在广义预测控制中,采用RBF神经网络建立被控对象的多步预测模型,并不断修正预测输出,提高预测输出的精度。控制器则采用GPC隐式修正算法,不用辨识对象的模型参数,大大减少了计算量。经过仿真研究,与常规的PID自适应控制方法相比较,证明了该方法的优越性,预测控制误差小,实时性好,动态响应快。 A generalized predictive self-tuning control scheme based on RBF neural network is proposed for a class of time delay nonlinear controlled objects.In the generalized predictive control(GPC),RBF neural network is used to establish multi-step predictive models of the controlled object,and constantly revising forecast output to improve the accuracy of predictive output.The controller adopts a GPC implicit correction algorithm,without to identify the model parameters,the calculated amount is gready reduced.By computer simulating,and comparing with the conventional PID adaptive control methods,the superiority of the method is proved,and it has small predictive control error,good real-time performance and fast dynamic response.
出处 《测控技术》 CSCD 2017年第2期54-57,共4页 Measurement & Control Technology
基金 国家自然科学基金项目(U1404612)
关键词 时滞非线性 RBF神经网络 广义预测控制 多步预测 nonlinear time-delay RBF neural network generalized predictive control multi-step prediction
  • 相关文献

参考文献8

二级参考文献37

  • 1朱学峰,Sebo.,DE.采用Hammerstein模型的非线性预测控制[J].控制理论与应用,1994,11(5):564-575. 被引量:22
  • 2王伟.具有Hammerstein形式的非线性系统广义预测控制[J].控制理论与应用,1994,11(6):672-680. 被引量:16
  • 3王伟.广义预测自适应控制的直接算法及全局收敛性分析[J].自动化学报,1995,21(1):57-62. 被引量:23
  • 4易继锴 侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2000.95-108.
  • 5[4]Pu Han,Peng Guo.The research of GPC based on hopfield met-work and its application in unit load system[C].Proceedings of the International Conference on Machine Learning and Cyber-netics,2003:1226-1230.
  • 6[5]Sun HaiRong,Li Peng,Zhou LiHui.A strategy of generalized pre-dictive control based on neural network[C].Proceedings of the Third International Conference on Machine Learning and Cyber-netics,2004:2145-2149.
  • 7[6]Jin Yao Sung,Yoon Ho Choi,Jin Bae Park.Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots:Adaptive learning rates approach[J].IEEE Trans on Circuits and Systems Ⅰ:Regular Papers,2006,53(6):1381-1394.
  • 8Xu Xiangyuan,电路与系统学报,1999年,4卷,2期,86页
  • 9Liu Baokun,Information and Control,1998年,27卷,5期,386页
  • 10Tan Yonghong,Automatic,1996年,32卷,12期,1701页

共引文献79

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部