期刊文献+

Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes 被引量:6

Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes
下载PDF
导出
摘要 Objective To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. Methods After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Results Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes’ maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. Conclusion The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders. Objective To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. Methods After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Results Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes’ maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. Conclusion The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders.
出处 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第1期44-51,共8页 生物医学与环境科学(英文版)
基金 supported by the National Natural Science Foundation of China,No.81271286 Beijing Natural Science Foundation,No.7152027 to YUAN Fang Innovation Foundation of Beijing Neurosurgical Institute,No.2014-11 to YAN Xu
关键词 ASTROCYTES GLUTAMATE Mitochondrial metabolism GLYCOLYSIS LACTATE Astrocytes Glutamate Mitochondrial metabolism Glycolysis Lactate
  • 相关文献

同被引文献18

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部