摘要
准确的风电功率预测是提高电网稳定性、增加风电场竞争力的重要途径。文章提出了一种以虚拟测风塔技术对测风塔数据进行预处理的方法,对缺失数据进行补全,利用RBF神经网络建立风速预测模型,拟合风速功率曲线得到风电功率预测结果。实验分析显示,基于虚拟测风塔技术的数据预处理方法可有效增加测风数据完整度,提高预测精度,降低风电场的运行维护成本,进一步提高风电场竞争力,具有实际应用价值。
Accurate forecast of wind power is an important way to both improve the stability of power grid and increase the competitiveness of wind farm. In this paper,a technology of virtual wind measurement mast method is put forward for pretreatment in order to filling the missing values. Then, RBF model is applied to establish wind speed forecasting model and wind speed - power curve is finally used to obtain the wind power forecasting result. The simulation shows that the pretreatment method based on technology of virtual wind measurement mast can not only effectively increase the integrity of wind measurement data and improve the accuracy of forecasting but also reduce the cost of maintenance and improve the competitiveness of wind farm ,which is of practical application value.
出处
《可再生能源》
CAS
北大核心
2017年第2期298-303,共6页
Renewable Energy Resources
基金
中国南方电网有限责任公司科技项目(GDKJ00000065)
关键词
风力发电
功率预测
虚拟测风塔
RBF神经网络
wind power generation
wind power forecasting
virtual wind measurement mast
RBF neural network