期刊文献+

OMAP-L138与OV2460的人脸识别系统

Face Recognition System Based on OMAP-L138and OV2460
下载PDF
导出
摘要 人脸识别技术是一项新兴的生物识别技术,在门禁考勤系统、出入监管系统,智能家居系统中都有广泛的应用。针对手持式嵌入式设备中的低功耗、高性能要求,提出以基于OMAP-L138的异构双核处理器为核心,以200万像素的OV2640摄像头为采集前端的人脸识别平台,基于TI公司SysLink双核通信组件,满足识别的精度与速度的要求。实验采取多组对比试验的方法,通过优化人脸识别算法中的比率,从而达到较高的准确度。 Face recognition technology is an emerging biometrics technology, which has been widely used in the entrance guard system, the access control system, the intelligent home system and so on. In order to meet the requirements of low-power consumption and perform- ance in the handheld embedded devices,the face recognition platform is proposed,which takes the OMAP-L138-based heterogeneous du- al-core processor as the core and the OV2640 camera as the acquisition front-end. The TI SysLink dual-core communication components takes into account the recognition of the accuracy and speed requirements. In order to improve the accuracy of the face recognition algo rithm, a series of contrast experiments are adopted.
出处 《单片机与嵌入式系统应用》 2017年第3期64-66,共3页 Microcontrollers & Embedded Systems
关键词 OMAP—L138 OV2640 人脸识别 双核通信 OMAP-L138 OV2640 face recognition dual-core communication
  • 相关文献

参考文献2

二级参考文献25

  • 1B Moghaddam, A Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition [ C ]//Faces Recognition : From Theory to Application, New York : Springer Verlag, 1998 : 230 - 243.
  • 2H Schneiderman, T Kanade. A statistical method for 3D object detection applied to faces and cars [ C ]. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island. South Carolina. ,2000.
  • 3V P Kumar, T Poggio. Learning based approach to real time tracking and analysis of faces [ EB/OL ]. http: cbcl. mit. Edu/cbcl/publications/ai · publications, 1999.
  • 4H A Rowley. Neural network-based human face detect [ D]. Ph. D. dissertation. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 5Paul Viola, Michael Jones. Rapid object detection using a boosted Cascade of simple features [ C ]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Kauai Hawaii, USA,2001:905 - 910.
  • 6Freund Yoav, Schapire R E. Experiments with a new boosting algorithm machine learning [ C ]. Proeeedingsting of the Thirteenth International Conference, 1999 : 148 - 156.
  • 7Fridich J, Goljan M, Du R. Detection ESB steganography in color and gray-scale images [ J ]. Magazine of IEEE Multimedia: Special Issue on Security, 2001, 8 ( 4 ) : 22 - 28.
  • 8Fridich J, Goljan M, Hogea D. Steganalysis of JPEG images : breaking the F5 algorithm [ C ]//Proc of the international Workshop on Information Hiding, Lecture Notes in Computer Science 2578. [ S. l. ] : Springer-Verlag, 2002 : 310 -323.
  • 9Tsengyc, Chenyy, Panhk. A secure data hiding scheme forbinmy images [ J ]. IEEE Transactions on Communications,2002,50(8) : 1227 - 1231.
  • 10B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部