期刊文献+

不确定数据中的代表频繁项集近似挖掘 被引量:1

Approximation of Representative Frequent Itemsets Mining in Uncertain Data
下载PDF
导出
摘要 不确定数据的频繁项集挖掘作为很多数据挖掘任务的基本步骤,引起了很多学者的关注。但是当不确定数据集的规模很大时,会产生数目巨大的频繁项集,给后续挖掘工作带来难题。为解决这一问题,论文提出不确定数据集中的代表频繁项集概念,并利用VC维的概念,确定抽样空间,提出一种基于随机抽样的代表频繁项集近似挖掘算法,在保证挖掘效果的前提下,减少了挖掘出的频繁项集的数量,提高算法的效率。 Since mining frequent itemsets in uncertain data is the fundamental step of many data mining tasks,it has attracted much attention from lots of researchers.However,this work will find large amount of frequent itemsets when the dataset is huge.It puts an obstacle to the next work.To address this problem,an efficient approximation mining algorithm of representative frequent itemsets is proposed in this paper.In the method,the VC-dimension theory is used to reduce the size of sample and provide satisfactory performance guarantees on the quality of the approximation.The algorithm is based on random sampling to mine representative frequent itemsets.It improves efficiency of mining task and reduces the number of frequent itemsets.
作者 陈凤娟
出处 《计算机与数字工程》 2017年第2期266-271,共6页 Computer & Digital Engineering
关键词 不确定数据 代表频繁项集 近似算法 VC维 uncertain data representative frequent itemset approximation algorithm VC-dimension
  • 相关文献

参考文献2

二级参考文献34

  • 1李建中 于戈 周傲英.不确定性数据管理的要求与挑战[J].中国计算机学会通讯,2009,5(4):6-14.
  • 2李雪,江贺.不确定数据挖掘技术研究进展[J].中国科技论文在线,2009.
  • 3Agrawal R, Srikant R.Fast algorithms for mining association rules in large databases[C]//Proc of 20th 1CDE, 1997:487-499.
  • 4Agrawal R, Srikant R.Mining sequential patterns[C]//Proc of the llth ICDE, 1995:3-14.
  • 5Bonchi F, Lucchese C.Pushing tougher constraints in frequent pattern mining[C]//Ho T B,Cheung D,Liu H.LNCS 3518:PAKDD 2005.Heidelberg: Springer, 2005:114-124.
  • 6Agrawal R, Srikant R.Fast algorithms for mining association rules[C]//Proc VLDB, 1994:487-499,.
  • 7Cheung W, Zaiane O R.Incremental mining of frequent patterns without candidate generation or support constraint[C]//Proc IDEAS, 2003 : 111-116.
  • 8E1-Hajj M, Zaiane 0 R.COFI-tree mining: a new approach to pattern growth with reduced candidacy generation[C]//Proc FIM1,2003.
  • 9Giannella C, Han J.Mining frequent patterns in data streams at multiple time granularities[C]//Data Mining : Next Generation Challenges and Future Directions,2004.
  • 10Han J,Pei J, Yin Y.Mining frequent patterns without candidate generation[C]//Proc SIGMOD, 2000: 1-12.

共引文献23

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部