期刊文献+

基于偏微分方程的含噪图像复原新模型 被引量:1

A New Image Restoration Model Based on Partial Differential Equation
下载PDF
导出
摘要 针对现有的用于图像复原的全变分和四阶偏微分方程模型存在的不足,提出一种图像复原新模型。新模型的思想是将全变分和四阶偏微分方程模型相结合,同时通过修改方程中的一个扩散项的系数,来达到增强去噪效果的目的。新模型弥补了经典图像复原方法的不足,既保护了图像边缘,又抑制了"阶梯效应",且具有较高的信噪比。理论分析和MATLAB仿真结果表明,经过新模型复原的图像质量较高,具有良好的视觉效果,充分体现了新模型在图像复原上的有效性。 Aiming at the shortcomings of the existing total variation and fourth order partial differential equation(PDE)image restoration model,a new image restoration model is put forward.The ideal of the new model is to combine the two models,at the same time,by modifying a diffusion coefficient of the equation,to achieve the enhancement purpose to the effect of image denoising.The new model not only makes the image edge details be protected and the"ladder effect"be restrained,but also has high signal-to-noise ratio.Theoretical analysis and MATLAB simulation results show that the recovery image quality is higher after the new model dispose,and also have a good visual effect,fully embodying the effectiveness of the new model on image restoration.
作者 王俊 杨成龙
出处 《舰船电子工程》 2017年第2期95-97,共3页 Ship Electronic Engineering
基金 国家"973"重大专项"磁约束聚变堆内部件关键技术问题研究"(编号:2013GB113000) 长脉冲H模的实现及相关机理研究(编号:2014GB106000)资助
关键词 偏微分方程 图像复原 扩散项系数 MATLAB partial differential equation(PDE) image restoration the diffusion coefficient MATLAB
  • 相关文献

参考文献4

二级参考文献47

  • 1谢美华.基于四方向导数信息的图像非线性扩散去噪[J].红外技术,2004,26(6):51-53. 被引量:3
  • 2付树军,阮秋琦,王文洽.偏微分方程(PDEs)模型在图像处理中的若干应用[J].计算机工程与应用,2005,41(2):33-35. 被引量:14
  • 3贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 4Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physiea D, 1992,60: 259-268.
  • 5Lysaker M,Lundervold A,Tai X C.Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,12(12): 1579-1590.
  • 6Chambolle A,Lions P L,Image recovery via total variation minimization and related problems[J].Numer Math, 1997,76(2): 167-188.
  • 7You Y L,Kaveh M.Fourth-order partial differential equation for noise removal[J].IEEE Transactions on Image Processing,2000,9(10): 1723-1730.
  • 8Lysaker M,Osher S,Tai X C.Noise removal using smoothed normals and surface fitting[J].IEEE Transactions on Image Processing, 2004,13( 10): 1345-1357.
  • 9Osher S,Sole A,Vese L.Image decomposition and restoration using total variation minimization and the H^-1 norm[J].Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2003,1 (3) : 349- 370.
  • 10Greer J B,Bertozzi A L.H1 solutions of a class of fourth order nonlinear equations for image processing[C]//Chepyzhov V,Efendiev M,Miranville A,et al.Discrete and Continuous Dynamical Systems 2004:Special Issue in Honor of Mark Vishik,2004,1-2(10):349- 366.

共引文献24

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部