期刊文献+

基于大数据的城市居民职住锚点计算方法研究 被引量:6

Research on Residence-and-Work Anchor Points Algorithm with Big Data in Urban Research
下载PDF
导出
摘要 居住和就业是两个重要的居民时空行为要素,通勤行为规律能够直接反映城市空间结构特征,而大数据的发展对城市职住通勤研究提供了新的数据源与方法论。本文通过比较分析各个居民职住锚点计算方法,针对网络位置大数据提出基于密度的聚类算法;并以北京市东部及北三县地区为例进行案例分析。结论发现:基于密度的聚类算法速度快、准确度高,适合网络大数据在城市研究中的应用。 Residence and work are two of the most important time and space behavior elements for citizens. To a great extent, commuting pattern reflects spatial structure of a city. Nowadays, the development of information and communication techniques provides new data sources and methodology for urban studies. This paper introduces former algorithms for calculating residence-and-work anchor points, and puts forward a new clustering algorithm for internet LBS data based on DBSCAN. A case with the data produced by this new algorithm, commuting patterns of eastern Beijing and Beisanxian, was introduced afterwards. In conclusion, it's found that the new algorithm for residence-and-work anchor points has satisfactory speed and accuracy, and is suitable for the application of LBS data in urban researches.
出处 《西部人居环境学刊》 2017年第1期31-37,共7页 Journal of Human Settlements in West China
关键词 城市 大数据 锚点 算法 职住 通勤 Urban Big Data Anchor Points Algorithm Residence-and-Work Commute
  • 相关文献

参考文献8

二级参考文献161

共引文献698

同被引文献49

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部