期刊文献+

Hedgehog参与西伯利亚鲟侧线机械和电感受器分化的初始证据

THE INITIAL EVIDENCE FOR HEDGEHOG SIGNALING INVOLVED IN THE DIFFERENTIATION OF MECHANORECEPTORS AND ELECTRORECEPTORS IN THE LATERAL LINE SYSTEM IN SIBERIAN STURGEON
下载PDF
导出
摘要 为揭示Hedgehog(Hh)信号与神经丘和壶腹器官分化的关系,研究以西伯利亚鲟(Acipenser baerii Brandt)为模型,首先对再生过程中的神经丘和壶腹器官的转录组进行比较分析,发现Hh信号通路关键基因(Shh、Patched 1)在两类感受器中差异表达,且它们的表达在再生过程中呈现动态性。然后用环巴胺(Cyclopamine,Hh信号抑制剂)处理西伯利亚鲟胚胎(st29),用扫描电镜和FM1-43荧光染色对西伯利亚鲟仔鱼(st43-st44)分析发现环巴胺显著抑制了壶腹器官的发育。整体原位杂交表明,Shh、Patched1、Smoothened、Gli2在腹面侧线区域的表达受到了环巴胺的抑制。以上结果暗示Hh信号通路与神经丘和壶腹器官的发育有关,推测Hh信号在神经丘和壶腹器官的分化过程中起到了重要作用。 The lateral line system of some amphibians, all chondrichthyan and non-neopterygian fish is consisted of mechanoreceptors and electroreceptors that are originated from lateral line placodes. However, the molecular mechanism of mechanoreceptor and electroreceptor differentiation remains unclear. Hedgehog is a critical morphogen for pattern formation and stem cell differentiation of multiple organs. In this study, we investigated the relationship between hedgehog signaling and the differentiation of neuromast and ampullary organ in Siberian sturgeon. We found dynamic expression of Shh and Patched1 via the transcriptome analysis in regenerating neuromast and ampullary organ. Furthermore, inhibiting hedgehog signaling by cyclopamine from stage 29 to stage 37 reduced the number of ampullary organs specifically. In addition, cyclopamine repressed the expression of Shh, Patched1, Smoothened, and Gli2 in the ventral region of head. These results indicated that hedgehog signaling was related with the development ampullary organ in Siberian sturgeon.
出处 《水生生物学报》 CAS CSCD 北大核心 2017年第2期363-370,共8页 Acta Hydrobiologica Sinica
基金 上海海洋大学国际海洋研究中心(A-0209-15-0802) 上海海洋大学博士启动基金(A2-0203-00-100314)资助 上海高校水产学一流学科建设项目(A2-2019-14-0001-4) 上海市教委创新项目(12YZ129)~~
关键词 西伯利亚鲟 神经丘 壶腹器官 Hedgehog信号 环巴胺 Siberian sturgeon Neuromast Ampullary organ Hedgehog signaling Cyclopamine
  • 相关文献

参考文献1

二级参考文献31

  • 1Baker CVH. 2008. The evolution and elaboration of vertebrate neural crest cells[J]. Curr Opin Genet Dev, 18(6): 536-543.
  • 2Baker CVH, Bronner-Fraser M. 2001. Vertebrate cranial placodes I. Embryonic induction[J]. Dev Biol, 232(1): 1-61.
  • 3Baker CVH, O'Neill P, McCole RB. 2008. Lateral line, otic and epibranchial placodes: Developmental and evolutionary links?[J]. J Exp Zool B: Mol Dev Evol, 310(4): 370-383.
  • 4Camacho S, Del Valle Ostos M, Llorente JI, Sanz A, García M, Domezain A, Carmona R. 2007. Structural characteristics and development of ampullary organs in Acipenser naccarii[J]. Anat Rec, 290(9): 1178-1189.
  • 5Cheng H, Huang SQ, Heatwole H. 1995. Ampullary organs, pit organs, and neuromasts of the Chinese giant salamander, Andrias davidianus[J]. J Morphol, 226(2): 149-157.
  • 6Collazo A, Fraser SE, Mabee PM. 1994. A dual embryonic origin for vertebrate mechanoreceptors[J]. Science, 264(5157): 426-430.
  • 7Dupin E, Calloni G, Real C, Gon?alves-Trentin A, Le Douarin NM. 2007. Neural crest progenitors and stem cells[J]. C R Biol, 330(6-7): 521-529.
  • 8Freitas R, Zhang GJ, Albert JS, Evans DH, Cohn MJ. 2006. Developmental origin of shark electrosensory organs[J]. Evol Dev, 8(1): 74-80.
  • 9Gibbs MA. 2004. Lateral line receptors: Where do they come from developmentally and where is our research going?[J]. Brain Behav Evol, 64(3): 163-181.
  • 10Gibbs MA, Northcutt RG. 2004. Development of the lateral line system in the shovelnose sturgeon[J]. Brain Behav Evol, 64(2): 70-84.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部