期刊文献+

应用同伦分析法研究Mathieu-Duffing振子的周期解 被引量:1

Period solutions of Mathieu-Duffing oscillator by the homotopy analysis method
下载PDF
导出
摘要 应用同伦分析法研究了Mathieu-Duffing振子的周期解,展示了Mathieu-Duffing振子的周期1和周期2解的求解过程,通过求解构造的非线性代数方程组而获得周期解,应用Floquet理论判别了周期解的稳定性。比较了同伦分析方法得到的周期解和数值方法得到的周期解,结果表明两者具有一致性。 In this paper,the period motion of the Mathieu-Duffing oscillator is investigated by the homo-topy analysis method. The procedures of the solution of the period-1 and period-2 are presented. The period solutions are obtained by solving the nonlinear algebraic equations. Stability of the period motion is judged by the Floquet theory. The phase portraits of period solution obtained by the homotopy analysis method agree well with those obtained by the numerical time-integration method.
出处 《计算力学学报》 CAS CSCD 北大核心 2017年第1期111-116,共6页 Chinese Journal of Computational Mechanics
基金 四川省高校重点实验室开放基金(2016QZJ03) 四川理工学院校基金(2015KY02)资助项目
关键词 同伦分析法 Mathieu-Duffing振子 周期解 FLOQUET理论 the homotopy analysis method Mathieu-Duffing oscillator period motion floquet theory
  • 相关文献

参考文献3

二级参考文献38

  • 1Mickens R E. Mathematical and numerical study of the Duffing-harmonic oscillator[ J]. J Sound Vibration, 2001,244 (3) : 563-567.
  • 2Lira C W, Wu B S. A new analytical approach to the Duffmg-harmonic oscillator[ J ]. Phys Lett A, 2003,311(5) : 365-377.
  • 3Tiwari S B, Rao B N, Swamy N S, et al. Analytical study on a Duffing-hatmonic oscinator[J]. J Sound Vibration,2005,285(4) : 1217-1222.
  • 4Hu H,Tang J H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance[ J]. J Sound Vibration ,2006,294(3) :637-639.
  • 5Lim C W, Wu B S, Sun W P. Higher accuracy analytical approximations to the Duffmg-harmonic oscillator[ J ] . J Sound Vibration, 2006,29-(4) : 1039-1045.
  • 6Hu H. Solutions of the Duffmg-hamlonic oscillator by an iteration procedure[ J]. J Sound Vibration, 2006,298( 1 ) :446-452.
  • 7Murdock J A. Perturbations : Theory and Methods [ M]. New York: Wiley, 1991.
  • 8Nayfeh A H. Perturbation Methods I M]. New York: Wiley, 2000.
  • 9Liao S J. The proposed homotopy analysis technique for the solution of nonlinear problems[ D]. PhD thesis. Shanglmi: Shanghai Jiao Tong University, 1992.
  • 10Liao S J. Beyond Perturbation: Introduction to the Homotolry Analysis Method[ M]. Boca Raton: Chapman & HalVCRC Press, 2003.

共引文献10

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部