期刊文献+

基于改进型粒子群的作业车间调度问题研究 被引量:3

Research on job-shop scheduling problem based on improved particle swarm optimization algorithm
下载PDF
导出
摘要 研究以最小化作业加工总时间为目标的作业车间调度问题,受生物体自调节机制启发,改进了传统粒子群算法,提高了搜索效率,优化了调度结果。在该研究中,借鉴生物体内部自我调节机制,在粒子群算法中引入自适应调节因子,通过单个粒子感知共同飞行的其他粒子信息来自我调整飞行状态,以达到更大的搜索范围和更好的搜索质量。最后通过对作业车间调度实例Lawerence's系列问题进行测试,测试结果验证了算法的有效性。 Taking a bio - inspired improved particle swarm optimization algorithm to minimize the maximal total processing time of the job - shop scheduling, it studies the biological adaptive modulation mechanism, proposes the adaptive regular factor to modify the updating equations of particle swarm based on the information of the par- ticles around the single particle. It improves the flying function of the particle swarm, obtains better searching ef- ficiency and searching quality. The simulation results based on benchmarks demonstrate its feasibility and effec- tiveness.
出处 《机械设计与制造工程》 2017年第1期11-15,共5页 Machine Design and Manufacturing Engineering
基金 国家自然科学基金青年项目(51505126) 江苏省常州市科技计划资助项目(CJ20159052)
关键词 车间调度 自适应调节 改进型粒子群算法 job - shop scheduling problem adaptive modulation improved particle swarm optimization algorithm
  • 相关文献

参考文献2

二级参考文献18

  • 1高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 2J Kennedy,R C Eberhart. Particle swarm optimization[A].in: Proceedings of the IEEE International Joint Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Service Center, IEEE Press, 1995. 1942 - 1948.
  • 3Qingyun Yang,Jigui sun, Juyang Zhang, Chunjie Wang.A hybrid discrete particle swarm algorithm for open-shop problems [A]. Proceedings of the 6th International Conference on Simulated Evolution And Learning (SEAL 2006) [ C]. Hefei, China, LNCS 4247,2006. 158 - 165.
  • 4K Rameshkumar, R K Suresh, K M Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makspan[ A ]. In: Proc. ICNC 2005 [C]. Changsha, China, LNCS 3612,2005.572 - 581.
  • 5Pant,M Radha, T Singh, V P.A simple diversity guided particle swarm optimization [A]. IEEE Congress on Evolutionary Computation[C]. Singapore, CEC2007. 2007. 3294 - 3299.
  • 6Christopher K. Monson, Kevin D. Seppi, Adaptive Diversity in PSO[ A]. Proceedings of the 8th annual conference on Genetic and evolutionary computation Seattle [ C ]. Washington, USA, 2006.59 - 66.
  • 7M Clerc: Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem[A ]. In: New Optimization Techniques in Engineering[ C ]. Heidelberg, Germany, 2004. 219 - 239.
  • 8A C. Nearchou, The effect of various operators on the genetic search for large scheduling problems[J]. Int. J. Product. E-conom. 2004,88( 1 ) : 191 - 203.
  • 9Zhigang Lian, Xingsheng Gu and Bin Jiao, A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006,175( 1 ) : 773 - 785.
  • 10A Chatterjee, P Siarry. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[ J]. Computers & Operations Research, 2006,33 ( 3 ) : 859 - 871.

共引文献93

同被引文献25

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部