期刊文献+

识别次氯酸的荧光探针 被引量:6

Fluorescent Probes for the Recognition of Hypochlorous Acid
原文传递
导出
摘要 机体内的次氯酸(HClO)是由过氧化氢和氯离子在髓过氧化物酶(MPO)催化作用下产生。由于其在细胞的分化、迁移、传导和免疫等生理过程中起着非常重要的调控作用,因此对次氯酸的识别与检测有着非常重要的意义。荧光探针法具有灵敏度高、选择性好、检测限低、响应时间短、可视化检测和原位无损等优点,引起了科研工作者利用该方法对机体内次氯酸的研究兴趣。本文基于荧光探针与次氯酸的识别机制,主要综述了近三年用来识别次氯酸荧光探针研究进展。讨论了次氯酸荧光探针的设计策略、响应模式以及生物应用,并对次氯酸荧光探针的发展方向以及生物应用进行了展望。 Hypochlorous acid(HClO) is generated from hydrogen peroxide and chloridion via the catalysis of myeloperoxidase(MPO) in vivo.Normally,HClO acts as omnipresent intracellular regulator within life cycle of the cell,activating signaling pathways for cell differentiation,migration,transmission,proliferation and immune in physiological and pathological processes.Therefore,it is of vital importance to the detection and recognition of hypochlorous acid.Owing to simple operation,high sensitivity,sensitivity,low detection limit,rapid response,excellent spatial and temporal(spatiotemporal) resolution and especially nondestructive characteristics,Fluorescent probe technique has been paid special attention to research the physiological function of hypochlorous acid in vivo.Based on the recognition mechanism of fluorescent probes with hypochlorous acid,this review mainly summarizes the research progress of fluorescent probe for the recognition of hypochlorous acid in last three years.The design strategy of molecular structures and response pattern of these probes are also discussed as well as biological application.The development direction and biological application of hypochlorous acid fluorescent probes are also prospected.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2017年第1期17-35,共19页 Progress in Chemistry
基金 国家自然科学基金项目(No.21136002 21421005)资助~~
关键词 次氯酸 荧光探针 活性氧 环境检测 研究进展 生物成像 hypochlorous acid fluorescent probes reactive oxygen species environment detection research advance bio-imaging
  • 相关文献

参考文献4

二级参考文献234

  • 1Kimura H, Nagai Y, Umemura K, Kimura Y. Antioxid. Redox. Sign. , 2005, 7: 795.
  • 2Li L, Rose P, Moore P K. Annu. Rev. Pharmacol. Toxicol. , 2011, 51: 169.
  • 3Kimura H. Amino Acids, 2011, 41: 113.
  • 4Stipanuk M H, Ueki I. J. Inherit. MeTab. Dis., 2011, 34: 17.
  • 5Dominy J E, Stipanuk M H. Nutr. Rev. , 2004, 62: 348.
  • 6Calvert J W, Coetzee W A, Leter D J. Antioxid. Redox. Sign. , 2010, 12: 1203.
  • 7Lee M, Schwab C, Yu S, McGeer E, McGeer P L. Neurobiol. Aging, 2009, 30: 1523.
  • 8Tripatara P, Patel N S, Brancaleone V, Renshaw D, Rocha J, Sepodes B, Mota-Filipe H, Perretti M, Thiemermann C. Eur. J. Pharmacol. , 2009, 606: 205.
  • 9Stipanuk M H, Beck P W. Biochern. J. , 1982, 206: 267.
  • 10Madden J A, Ahlf S B, Dantuma M W, Olson K R, Roerig D L. Appl. Physiol. , 2012, 112: 411.

共引文献25

同被引文献29

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部