期刊文献+

典型暴雨优选综合模型研究 被引量:2

Research on Optimization Model Selection of Typical Storm
下载PDF
导出
摘要 鉴于典型暴雨在资料缺乏的中小流域水文设计时的重要性,考虑到典型暴雨本身具有灰色性、模糊性及随机性,从水文设计的安全性与样本集的整体性考虑,确定能反映暴雨特性的因子指标,采用可能度法计算各指标的权重,在典型暴雨灰加权关联度综合评价模型、典型暴雨模糊加权模式识别模型及典型暴雨贝叶斯加权评价模型三个单一模型的基础上,构建了基于贝叶斯理论的典型暴雨灰色模糊优选综合模型,以优选典型暴雨。实例应用结果表明,单一模型及综合模型均给出了选择典型暴雨的定量计算方法,得到了典型暴雨的可行性解集,弥补了传统定性选择典型暴雨主观随意性较大的不足,其中综合模型得到的可行性解集更可靠,解集中各元素的离散程度大,更便于典型暴雨的优选。 In view of the importance of the typical storm in hydrology design of middle and small basins with lack of data, considering the grey, fuzzy and randomness of the typical storm, the influencing factors ware determined from hydrological design security and the integrity of the sample set. The range number-possibility degree method was applied to calculate the weight of influencing factors. Based on the grey weighted interaction degree, fuzzy pattern recognition model and BFS weighted evaluation model, a comprehensive grey fuzzy optimization evaluation model based the BFS theo- ry was established to optimize the typical storm. The numerical example shows that both of the single model and integrat- ed model provide quantitative calculation method of the typical storm and get the feasible solution set so that it remedied the shortcomings of the traditional method with subjective randomicity. The feasible solution set of integrated model is more reliable and the discrete degree of solution set is larger, which is convenient for optimization selection of the typical storm.
出处 《水电能源科学》 北大核心 2017年第1期10-13,共4页 Water Resources and Power
关键词 典型暴雨 影响指标 灰色理论 模糊理论 贝叶斯理论 typical storm influence factors grey theory fuzzy theory BFS theory
  • 相关文献

参考文献4

二级参考文献22

  • 1Yaakov Bar-Shalom, William Dale Blair. Muhitarget-Multisensor Tracking, Application And Advances, Volume Ⅲ [ M ]. Artech House. 2000.
  • 2Duy H. Nguyen, John H. Kay, Bradley J. Orchard, and Robert H. Whiting. Classification and Tracking of Moving Ground Vehicles [ J ]. Lincoln Laboratory Journal. 2002, 13 (2),275-308.
  • 3Lang Hong, Ningzhou Cui, Mark Pronobis, and Stephen Scott. Local Motion Feature Aided Ground Moving Target. Tracking With GMTI and HRR Measurements. IEEE Transactions On Automatic Control, Vol. 50, No. 1, January 2005.
  • 4Yaakov Bar-Shalom,T. Kirubarajan, Cenk Gokberk. Tracking with Classification-Aided Multiframe Data Association [ J ]. IEEE Transactions On Aerospace And Electronic Systems. 2005,50( 1 ), 127-133.
  • 5Kevin J. Sullivan, Matthew B. Resslerb, Robert L. Williams. Signature-aided tracking using HRR profiles [ C ]. SPIE 2001.
  • 6James Schmitz, John Greenewald. Model-Based Range Extent For Feature Aided Tracking [ C ]. IEEE International Radar Conference 2000.
  • 7Hsueh-Jyh Li ,Sheng-Hui Yang. Using Range Profiles as Feature Vectors to Identify Aerospace Objects. IEEE Trans. Antennas and Propagation, 1993,41 ( 3 ) ,261-268.
  • 8Xu Zeshui, Chen Jian. Some Models for Deriving the Priority Weights from Interval Fuzzy Preference Relations[J]. European Journal of Operational Research, 2008,184(1):266-280.
  • 9邓聚龙.灰色控制系统[M].武汉:华中理工大学出版,1997..
  • 10夏军,A grey system approach applied to catchment hydrology,1990年

共引文献9

同被引文献18

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部