期刊文献+

s-凹函数的拟Ros不等式 被引量:1

On Quasi Ros′ Inequality of S-Concave Functions
下载PDF
导出
摘要 s-凹函数与几何不等式有紧密联系.利用著名的Ros不等式和基本不等式得到了拟Ros不等式,根据s-凹函数的几何性质得到了关于s-凹函数的拟Ros不等式. There exists amazing connections between s-concave functions and geometric inequality.In this paper,aquasi Ros′ inequality has been obtainedby means of the well-known Ros′ inequality,according to the geometric properties of s-concave functions,the quasi Ros′ inequality of s-concave functions have been established.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2017年第2期22-25,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 Ros不等式 s-凹函数 GAUSS曲率 Ros′ inequality s-concave functions Gauss curvature
  • 相关文献

参考文献1

二级参考文献22

  • 1Burago Y. D., Zalgaller V. A., Geometric Inequalities, New York: Springer-Verlag, 1988.
  • 2Zhou J., On the Willmore deficit of convex surfaces, Lectures in Appl. Math. of Amer. Math. Soc., 1994, 8: 279-287.
  • 3Zhou J., On Willmore inequalities for submanifolds, Canadian Mathematical Bulletin, 2007, 50(3): 474-480.
  • 4Zhou J., The Willmore functional and the containment problem in R^4, Science in China Series A: Mathematics, 2007, 50(3): 325-333.
  • 5Zhou J., On Bonnesen-Type inequalities, Acta Mathematiea Siniea, Chinese Series, 2006, 50(6): 1397-1402.
  • 6Zhou J., Chen F., The Bonnesen-type inequalities in a plane of constant curvature, Jouunal of Korean Math. Seo., 2007, 44(6): 1363-1372.
  • 7Zhou J., New curvature inequalities for curves, Inter. J. of Math., Comp. Sci. & Appl., 2007, 1(1/2): 145-147.
  • 8Zhang G., Zhou J., Containment Measures in Integral Geometry, Integral Geometry and Convexity, Singapore: World Scientific, 2005.
  • 9Montiel S., Ros A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvature, Diff. Geom., Pitman Monogr Surveys Pure Appl. Math., Longman Sci. Tech, Harlow, 1991, 52: 279-296.
  • 10Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8): 731-756.

共引文献13

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部