期刊文献+

超密集分簇网络中基于马尔可夫模型的移动性能建模与分析

Mobile Performance Modeling and Analysis Based on the Markov Process in the Ultra Dense Network
下载PDF
导出
摘要 第五代移动通信(5G)系统中,大规模MIMO天线和超密集部署网络是实现高吞吐量的两种主要方法。在超密集部署网络中,将小蜂窝的基站按照地域位置和信号强度等条件进行分簇,簇内所有的小蜂窝共用同一控制平面,实现了业务和控制的分离。基于此场景,提出了基于马尔可夫模型对移动终端在超密集分簇网络下的移动状态进行建模,推导出系统吞吐量、阻塞概率等系统性能的闭式表达式。仿真结果表明超密集分簇网络可以有效地减少移动终端不必要的切换次数,并提高系统吞吐量。 In the Fifth Generation (5G) mobile communication system, massive MIMO antenna and ultra-dense deployment of the network are the two ways to achieve high throughput. The base stations in small cells are divided into clusters equally according to their location and signal strength in ultra-dense deployment of the network. All small cellulars in one cluster share the control plane. This paper presents a kind of Markova model of the mobile terminals' states based on the scenario and deduces the closed-form expressions of system throughput, blocking probability and so on. Simulation results demonstrate that the ultra-dense network can effectively reduce the unnecessary switching of mobile terminals, and improve the system throughput.
出处 《信息通信技术》 2017年第1期78-84,共7页 Information and communications Technologies
基金 国家863课题(2015AA01A705) 国家自然科学基金(61372125)
关键词 超密集网络 分簇 马尔可夫模型 移动性建模 Ultra Dense Network Network Cluster Markov Process Mobile Performance Modeling
  • 相关文献

参考文献3

二级参考文献38

  • 13GPP TS 36.201. LTE physical layer; General description [S]. 2009. 3GPP TR 36.902.
  • 2Self-con guring and self-optimizing network (SON) use cases and solutions[S]. 2011.
  • 33GPP TS 36.300, E-utra and e-utran overall description[S]. 2009.
  • 4Xu Le-xi, Chen Yue, Chai K K, et al.. Cooperative load balancing for OFDMA cellular networks[C]. 18th European Wireless Conference, Poznan, 2012: 1-7.
  • 5Li Qian, Hu R Q, Wu Geng, et al.. On the optimal mobile association in heterogeneouswireless relay networks[C]. Proceedings of the IEEE INFOCOM, Orlando, 2012: 1359-1367.
  • 6Ye Qiao-yang, Rong Bei-yu, Chen Yu-dong, et al.. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706-2716.
  • 7Li Zhi-hang, Hao Wang, Pan Zhi-wen, et al.. Dynamic load balancing in 3GPP LTE multi-cell fractional frequency reuse networks[C]. IEEE Vehicular Technology Conference, Canada, 2012: 1-5.
  • 8Gao N and Wang X. Optimal subcarrier-chunk scheduling for wireless OFDMA systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2116-2123.
  • 9Erfania T and Utyuzhnikova S V. Directed search domain: a method for even generation of the Pareto frontier in multi-objective optimization[J]. Engineering Optimization, 2011, 43(5): 467-484.
  • 10Ponsich A, J aimes A L, and Coello C A. A survey on multi-objective evolutionary aigorithmsfor the solution of th e portfolio optimization problem and other finance and economics applications[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 321-344.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部