期刊文献+

基于视频图像块模型的局部异常行为检测 被引量:1

Local abnormal behavior detection based on video image block
下载PDF
导出
摘要 为提高视频监控下局部异常行为检测的准确性和快速性,文中提出一种基于视频图像块模型的局部异常行为检测方法。该方法首先进行基于梯度直方图的视频图像块提取和基于时空相关性的视频图像块优化;然后,对视频图像块进行基于张量投票的正常行为模型学习和基于时空相似性的异常行为模型学习;最后,依据学习结果进行视频图像块的局部异常行为检测,确定异常区域并进行有效的标记。在通用UCSD数据集和Subway数据集上的实验结果表明,文中所提方法能有效提高局部异常行为检测的准确性和检测的效率。 To improve the accuracy and the speed of the local abnormal detection, a novel method based on video image block model is proposed. Firstly the video block is extracted based on the gradient histo- gram and optimized based on the temporal-spatial coherence. Then, the normal behavior model is learned based on the tensor voting algorithm and the abnormal behavior model is learned based on the temporal- spatial coherence. Finally, the abnormal behavior is detected and labeled. The experiment is conducted on public UCSD and Subway datasets. Experimental results demonstrates that the proposed method can improve the accuracy and the efficiency of the local abnormal behavior detection.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2017年第1期32-40,共9页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省青蓝工程优秀青年骨干教师人才计划(2014年 2016年)资助项目
关键词 异常行为检测 视频图像块 UCSD数据集 Subway数据集 anomaly behavior detection video block UCSD dataset Subway dataset
  • 相关文献

参考文献1

二级参考文献56

  • 1钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 2POPOOLA O P, WANG K. Video-based abnormal hu- man behavior recognition-a review [ J ], IEEE Transac- tions on System, Man, and Cybernetics Part C, 2012,42 (6) : 865-878.
  • 3COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring [ C]. Proceedings of the 1999 American Nuclear Society (ANS) Eighth In- ternational Topical Meeting on Robotic and Remote Sys- tems, Pittsburgh, PA, USA ,25-29April, 1999.12-19.
  • 4HARITAOGLU I, HARWOOD D, DAVIS L S. W4 : A real time system for detecting and tracking people [ C ]. Proceedings of the 1998 IEEE International Conference on Computer Vision and Pattern Recognition, Santa Bar- bara, CA, USA, 23-25June, 1998,962-969.
  • 5HUANG K,TAN T. Vs-star: a visual interpretation sys- tem for visual surveillance[ J]. Pattern Recognition Let- ters,2010,31 ( 15 ) : 2265-2285.
  • 6University of California, San Diego. UCSD Anomaly De-tection Dataset [ EB/OL ]. http ://www. svcl. ucsd. edu/ project-s/anomaly/dataset, html. 2010-10-10.
  • 7University of Minnesota. UMN abnormal events detection dataset [ EB/OL ]. http ://mha. cs. umn. edu/proj _ e- vents, shtml. 2009-4-12.
  • 8ADAM A, RIVLIN E, SHIMSHONI I, REINITZ D. Ro- bust real-time unusual event detection using multiple fixed-location monitors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555-560.
  • 9TAMRAKAR A, ALI S, YU Q, et al. Evaluation of low- level features and their combinations for complex event detection in open source videos [ C ]. Proceedings of the 2012 IEEE InlLernational Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16- 21June,2012 : 3681-3688.
  • 10KWON J, LEE K M. A unified framework for event sum- marization and rare event detection [ C ]. Proceedings of the 2012 IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21June ,2012 : 1266-1273.

共引文献26

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部