期刊文献+

Impact of thermal processes on multi-crystalline silicon

Impact of thermal processes on multi-crystalline silicon
原文传递
导出
摘要 Fabrication of modem multi-crystalline silicon solar cells involves multiple processes that are thermally intensive. These include emitter diffusion, thermal oxida- tion and firing of the metal contacts. This paper illustrates the variation and potential effects upon recombination in the wafers due to these thermal processes. The use of light emitter diffusions more compatible with selective emitter designs had a more detrimental effect on the bulk lifetime of the silicon than that of heavier diffusions compatible with a homogenous emitter design and screen-printed contacts. This was primarily due to a reduced effectiveness of gettering for the light emitter. This reduction in lifetime could be mitigated through the use of a dedicated gettering process applied before emitter diffusion. Thermal oxida- tions could greatly improve surface passivation in the intra- grain regions, with the higher temperatures yielding the highest quality surface passivation. However, the higher temperatures also led to an increase in bulk recombination either due to a reduced effectiveness of gettering, or due to the presence of a thicker oxide layer, which may interrupt hydrogen passivation. The effects of fast firing were separated into thermal effects and hydrogenation effects. While hydrogen can passivate defects hence improving the performance, thermal effects during fast firing can dissolve precipitating impurities such as iron or de-getter impurities hence lower the performance, leading to a poisoning of the intra-grain regions. Fabrication of modem multi-crystalline silicon solar cells involves multiple processes that are thermally intensive. These include emitter diffusion, thermal oxida- tion and firing of the metal contacts. This paper illustrates the variation and potential effects upon recombination in the wafers due to these thermal processes. The use of light emitter diffusions more compatible with selective emitter designs had a more detrimental effect on the bulk lifetime of the silicon than that of heavier diffusions compatible with a homogenous emitter design and screen-printed contacts. This was primarily due to a reduced effectiveness of gettering for the light emitter. This reduction in lifetime could be mitigated through the use of a dedicated gettering process applied before emitter diffusion. Thermal oxida- tions could greatly improve surface passivation in the intra- grain regions, with the higher temperatures yielding the highest quality surface passivation. However, the higher temperatures also led to an increase in bulk recombination either due to a reduced effectiveness of gettering, or due to the presence of a thicker oxide layer, which may interrupt hydrogen passivation. The effects of fast firing were separated into thermal effects and hydrogenation effects. While hydrogen can passivate defects hence improving the performance, thermal effects during fast firing can dissolve precipitating impurities such as iron or de-getter impurities hence lower the performance, leading to a poisoning of the intra-grain regions.
出处 《Frontiers in Energy》 SCIE CSCD 2017年第1期32-41,共10页 能源前沿(英文版)
关键词 GETTERING grain boundaries HYDROGEN IMPURITIES OXIDATION PASSIVATION solar cell gettering, grain boundaries, hydrogen, impurities, oxidation, passivation, solar cell
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部