期刊文献+

基于稀疏聚类的高维数据特征选择及应用 被引量:3

High-Dimension Data Feature Selection and the Application Based on Sparse Clustering
下载PDF
导出
摘要 文章研究了一种高维数据聚类特征选择方法——稀疏聚类,稀疏聚类是通过对特征变量赋予权重,并添加lasso惩罚因子,压缩权重,得到对变量的权重排序,即重要性排序,使其在进行分类预测的同时达到自动剔除冗余变量的效果,从而起到了对高维数据聚类时的特征选择作用。将此方法运用于中国环保问题,将中国31个省份根据环保情况分为3类,并从现有的104个环保指标中筛选得到20个重要指标。 This paper investigates a feature selection method in high-dimensional data clustering called sparse clustering,which gives different weights to the features and select the features using a lasso-type penalty. Sparse clustering can help one cluster the observations using an adaptively chosen subset of the features, namely, it plays a role of feature selection in high-dimensional data. this paper applies sparse clustering on China' s environmental problems, dividing 31 provinces to 3 parts according to environmental condition and selecting 20 important items from 104 environmental items.
出处 《统计与决策》 CSSCI 北大核心 2017年第4期18-24,共7页 Statistics & Decision
基金 中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目(15XNL008)
关键词 稀疏聚类 高维数据 聚类 特征选择 sparse clustering high-dimensional data cluster feature selection
  • 相关文献

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部