摘要
Controlling the balanced gain and loss in a PT-symmetric system is a rather challenging task. Utilizing Floquet theory, we explore the constructive role of periodic modulation in controlling the gain and loss of a PT-symmetric optical coupler. It is found that the gain and loss of the system can be manipulated by applying a periodic modulation. Purther, such an original non-Hermitian system can even be modulated into an effective Hermitian system derived by the high-frequency Floquet method. Therefore, compared with other PT- symmetry control schemes, our protocol can modulate the unbroken PT-symmetric range to a wider parameter region. Our results provide a promising approach for controlling the gain and loss of a realistic system.
Controlling the balanced gain and loss in a PT-symmetric system is a rather challenging task. Utilizing Floquet theory, we explore the constructive role of periodic modulation in controlling the gain and loss of a PT-symmetric optical coupler. It is found that the gain and loss of the system can be manipulated by applying a periodic modulation. Purther, such an original non-Hermitian system can even be modulated into an effective Hermitian system derived by the high-frequency Floquet method. Therefore, compared with other PT- symmetry control schemes, our protocol can modulate the unbroken PT-symmetric range to a wider parameter region. Our results provide a promising approach for controlling the gain and loss of a realistic system.
基金
Acknowledgements We acknowledge helpful discussion with Chaohong Lee. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11465008, 11574405, and 11426223), the Hunan Provincial Natural Science Foundation (Grant Nos. 2015JJ2114, 2015JJ4020, and 14JJ3114), and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 14A118).